July  2019, 39(7): 3969-4000. doi: 10.3934/dcds.2019160

Cohomological equation and cocycle rigidity of discrete parabolic actions

a. 

The MITRE Corporation, McLean, VA 22102, USA

b. 

Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA

Approved for Public Release; Distribution Unlimited. Case Number 18-1082. The first author's affiliation with The MITRE Corporation is provided for identification purposes only, and is not intended to convey or imply MITRE's concurrence with, or support for, the positions, opinions or viewpoints expressed by the authors. ©2018 The MITRE Corporation. All rights reserved.
1 Based on research supported by NSF grant DMS-1700837

Received  June 2018 Revised  January 2019 Published  April 2019

We study the cohomological equation for discrete horocycle maps on $ {\rm SL}(2, \mathbb{R}) $ and $ {\rm SL}(2, \mathbb{R})\times {\rm SL}(2, \mathbb{R}) $ via representation theory. Specifically, we prove Hilbert Sobolev non-tame estimates for solutions of the cohomological equation of horocycle maps in representations of $ {\rm SL}(2, \mathbb{R}) $. Our estimates improve on previous results and are sharp up to a fixed, finite loss of regularity. Moreover, they are tame on a co-dimension one subspace of $ \operatorname{\mathfrak s\mathfrak l}(2, \mathbb{R}) $, and we prove tame cocycle rigidity for some two-parameter discrete actions, improving on a previous result. Our estimates on the cohomological equation of horocycle maps overcome difficulties in previous papers by working in a more suitable model for $ {\rm SL}(2, \mathbb{R}) $ in which all cases of irreducible, unitary representations of $ {\rm SL}(2, \mathbb{R}) $ can be studied simultaneously.

Finally, our results combine with those of a very recent paper by the authors to give cohomology results for discrete parabolic actions in regular representations of some general classes of simple Lie groups, providing a fundamental step toward proving differential local rigidity of parabolic actions in this general setting.

Citation: James Tanis, Zhenqi Jenny Wang. Cohomological equation and cocycle rigidity of discrete parabolic actions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3969-4000. doi: 10.3934/dcds.2019160
References:
[1]

H. Cartan and R. Takahashi, Théorie élémentaire des fonctions analytiques d'une ou plusieurs variables complexes, volume 115. Hermann Paris, 1961. Google Scholar

[2]

D. Damianovic and A. Katok, Periodic cycle functionals and cocycle rigidity for certain partially hyperbolic actions, Discrete Contin. Dynam. Syst, 13 (2005), 985-1005. doi: 10.3934/dcds.2005.13.985. Google Scholar

[3]

D. Damjanovic and A. Katok, Local rigidity of partially hyperbolic actions Ⅰ. KAM method and k actions on the torus, Annals of Mathematics, 172 (2010), 1805-1858. doi: 10.4007/annals.2010.172.1805. Google Scholar

[4]

D. Damjanovic and A. Katok, Local rigidity of homogeneous parabolic actions: Ⅰ. a model case, Journal of Modern Dynamics, 5 (2011), 203-235. doi: 10.3934/jmd.2011.5.203. Google Scholar

[5]

D. Damjanovic and J. Tanis, Cocycle rigidity and splitting for some discrete parabolic actions, Discrete and Continuous Dynamical Systems, 34 (2014), 5211-5227. doi: 10.3934/dcds.2014.34.5211. Google Scholar

[6]

L. Flaminio and G. Forni, Invariant distributions and time averages for horocycle flows, Duke Mathematical Journal, 119 (2003), 465-526. doi: 10.1215/S0012-7094-03-11932-8. Google Scholar

[7]

L. Flaminio and G. Forni, Equidistribution of nilflows and applications to theta sums, Ergodic Theory and Dynamical Systems, 26 (2006), 409-433. doi: 10.1017/S014338570500060X. Google Scholar

[8]

L. Flaminio and G. Forni, On effective equidistribution for higher step nilflows, arXiv preprint, arXiv: 1407.3640, 2014.Google Scholar

[9]

L. FlaminioG. Forni and J. Tanis, Effective equidistribution of twisted horocycle flows and horocycle maps, Geometric and Functional Analysis, 26 (2016), 1359-1448. doi: 10.1007/s00039-016-0385-4. Google Scholar

[10]

A. Katok and R. J. Spatzier, Subelliptic estimates of polynomial differential operators and applications to rigidity of abelian actions, Math. Res. Lett., 1 (1994), 193-202. doi: 10.4310/MRL.1994.v1.n2.a7. Google Scholar

[11]

A. Katok and A. Kononenko, Cocycles' stability for partially hyperbolic systems, Mathematical Research Letters, 3 (1996), 191-210. doi: 10.4310/MRL.1996.v3.n2.a6. Google Scholar

[12]

A. Katok and R. J. Spatzier, First cohomology of anosov actions of higher rank abelian groups and applications to rigidity, Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 79 (1994), 131–156. Google Scholar

[13]

A. Katok and R. J. Spatzier, Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions, Proc. Steklov Inst. Math., 216 (1997), 287-314. Google Scholar

[14]

G. A. Margulis, Finitely-additive invariant measures on Euclidean spaces, Ergodic Theory and Dynamical Systems, 2 (1982), 383-396. doi: 10.1017/S014338570000167X. Google Scholar

[15]

F. I. Mautner, Unitary representations of locally compact groups II, Annals of Mathematics, 52 (1950), 528-556. doi: 10.2307/1969431. Google Scholar

[16]

D. Mieczkowski, The first cohomology of parabolic actions for some higher-rank abelian groups and representation theory, J. Mod. Dyn, 1 (2007), 61-92. doi: 10.3934/jmd.2007.1.61. Google Scholar

[17]

F. A. Ramirez, Cocycles over higher-rank abelian actions on quotients of semisimple Lie groups, Journal of Modern Dynamics, 3 (2009), 335-357. doi: 10.3934/jmd.2009.3.335. Google Scholar

[18]

J. Tanis, The cohomological equation and invariant distributions for horocycle maps, Ergodic Theory and Dynamical systems, 34 (2014), 299-340. doi: 10.1017/etds.2012.125. Google Scholar

[19]

J. Tanis and Z. J. Wang, Cohomological equation and cocycle rigidity of discrete parabolic actions in some higher rank Lie groups, Geom. Funct. Anal., 25 (2015), 1956-2020. doi: 10.1007/s00039-015-0351-6. Google Scholar

[20]

A. F. M. Ter Elst and D. W. Robinson, Elliptic operators on Lie groups, Acta Applicandae Mathematicae, 44 (1996), 133-150. doi: 10.1007/BF00116519. Google Scholar

[21]

Z. J. Wang, Cohomological equation and cocycle rigidity of parabolic actions in some higher-rank Lie groups, Geometric and Functional Analysis, 25 (2015), 1956-2020. doi: 10.1007/s00039-015-0351-6. Google Scholar

[22]

Z. J. Wang, Cocycle Rigidity of Partially Hyperbolic Actions, Cocycle rigidity of partially hyperbolic actions, 2017.Google Scholar

[23]

R. J. Zimmer, Ergodic Theory and Semisimple Groups, Monographs in Mathematics, 81. Birkhäuser Verlag, Basel, 1984. doi: 10.1007/978-1-4684-9488-4. Google Scholar

show all references

References:
[1]

H. Cartan and R. Takahashi, Théorie élémentaire des fonctions analytiques d'une ou plusieurs variables complexes, volume 115. Hermann Paris, 1961. Google Scholar

[2]

D. Damianovic and A. Katok, Periodic cycle functionals and cocycle rigidity for certain partially hyperbolic actions, Discrete Contin. Dynam. Syst, 13 (2005), 985-1005. doi: 10.3934/dcds.2005.13.985. Google Scholar

[3]

D. Damjanovic and A. Katok, Local rigidity of partially hyperbolic actions Ⅰ. KAM method and k actions on the torus, Annals of Mathematics, 172 (2010), 1805-1858. doi: 10.4007/annals.2010.172.1805. Google Scholar

[4]

D. Damjanovic and A. Katok, Local rigidity of homogeneous parabolic actions: Ⅰ. a model case, Journal of Modern Dynamics, 5 (2011), 203-235. doi: 10.3934/jmd.2011.5.203. Google Scholar

[5]

D. Damjanovic and J. Tanis, Cocycle rigidity and splitting for some discrete parabolic actions, Discrete and Continuous Dynamical Systems, 34 (2014), 5211-5227. doi: 10.3934/dcds.2014.34.5211. Google Scholar

[6]

L. Flaminio and G. Forni, Invariant distributions and time averages for horocycle flows, Duke Mathematical Journal, 119 (2003), 465-526. doi: 10.1215/S0012-7094-03-11932-8. Google Scholar

[7]

L. Flaminio and G. Forni, Equidistribution of nilflows and applications to theta sums, Ergodic Theory and Dynamical Systems, 26 (2006), 409-433. doi: 10.1017/S014338570500060X. Google Scholar

[8]

L. Flaminio and G. Forni, On effective equidistribution for higher step nilflows, arXiv preprint, arXiv: 1407.3640, 2014.Google Scholar

[9]

L. FlaminioG. Forni and J. Tanis, Effective equidistribution of twisted horocycle flows and horocycle maps, Geometric and Functional Analysis, 26 (2016), 1359-1448. doi: 10.1007/s00039-016-0385-4. Google Scholar

[10]

A. Katok and R. J. Spatzier, Subelliptic estimates of polynomial differential operators and applications to rigidity of abelian actions, Math. Res. Lett., 1 (1994), 193-202. doi: 10.4310/MRL.1994.v1.n2.a7. Google Scholar

[11]

A. Katok and A. Kononenko, Cocycles' stability for partially hyperbolic systems, Mathematical Research Letters, 3 (1996), 191-210. doi: 10.4310/MRL.1996.v3.n2.a6. Google Scholar

[12]

A. Katok and R. J. Spatzier, First cohomology of anosov actions of higher rank abelian groups and applications to rigidity, Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 79 (1994), 131–156. Google Scholar

[13]

A. Katok and R. J. Spatzier, Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions, Proc. Steklov Inst. Math., 216 (1997), 287-314. Google Scholar

[14]

G. A. Margulis, Finitely-additive invariant measures on Euclidean spaces, Ergodic Theory and Dynamical Systems, 2 (1982), 383-396. doi: 10.1017/S014338570000167X. Google Scholar

[15]

F. I. Mautner, Unitary representations of locally compact groups II, Annals of Mathematics, 52 (1950), 528-556. doi: 10.2307/1969431. Google Scholar

[16]

D. Mieczkowski, The first cohomology of parabolic actions for some higher-rank abelian groups and representation theory, J. Mod. Dyn, 1 (2007), 61-92. doi: 10.3934/jmd.2007.1.61. Google Scholar

[17]

F. A. Ramirez, Cocycles over higher-rank abelian actions on quotients of semisimple Lie groups, Journal of Modern Dynamics, 3 (2009), 335-357. doi: 10.3934/jmd.2009.3.335. Google Scholar

[18]

J. Tanis, The cohomological equation and invariant distributions for horocycle maps, Ergodic Theory and Dynamical systems, 34 (2014), 299-340. doi: 10.1017/etds.2012.125. Google Scholar

[19]

J. Tanis and Z. J. Wang, Cohomological equation and cocycle rigidity of discrete parabolic actions in some higher rank Lie groups, Geom. Funct. Anal., 25 (2015), 1956-2020. doi: 10.1007/s00039-015-0351-6. Google Scholar

[20]

A. F. M. Ter Elst and D. W. Robinson, Elliptic operators on Lie groups, Acta Applicandae Mathematicae, 44 (1996), 133-150. doi: 10.1007/BF00116519. Google Scholar

[21]

Z. J. Wang, Cohomological equation and cocycle rigidity of parabolic actions in some higher-rank Lie groups, Geometric and Functional Analysis, 25 (2015), 1956-2020. doi: 10.1007/s00039-015-0351-6. Google Scholar

[22]

Z. J. Wang, Cocycle Rigidity of Partially Hyperbolic Actions, Cocycle rigidity of partially hyperbolic actions, 2017.Google Scholar

[23]

R. J. Zimmer, Ergodic Theory and Semisimple Groups, Monographs in Mathematics, 81. Birkhäuser Verlag, Basel, 1984. doi: 10.1007/978-1-4684-9488-4. Google Scholar

[1]

Bassam Fayad, Raphaël Krikorian. Rigidity results for quasiperiodic SL(2, R)-cocycles. Journal of Modern Dynamics, 2009, 3 (4) : 479-510. doi: 10.3934/jmd.2009.3.479

[2]

Artur Avila, Thomas Roblin. Uniform exponential growth for some SL(2, R) matrix products. Journal of Modern Dynamics, 2009, 3 (4) : 549-554. doi: 10.3934/jmd.2009.3.549

[3]

Artur Avila. Density of positive Lyapunov exponents for quasiperiodic SL(2, R)-cocycles in arbitrary dimension. Journal of Modern Dynamics, 2009, 3 (4) : 631-636. doi: 10.3934/jmd.2009.3.631

[4]

Russell Johnson, Mahesh G. Nerurkar. On $SL(2, R)$ valued cocycles of Hölder class with zero exponent over Kronecker flows. Communications on Pure & Applied Analysis, 2011, 10 (3) : 873-884. doi: 10.3934/cpaa.2011.10.873

[5]

Ser Peow Tan, Yan Loi Wong and Ying Zhang. The SL(2, C) character variety of a one-holed torus. Electronic Research Announcements, 2005, 11: 103-110.

[6]

Julie Déserti. Jonquières maps and $SL(2;\mathbb{C})$-cocycles. Journal of Modern Dynamics, 2016, 10: 23-32. doi: 10.3934/jmd.2016.10.23

[7]

Samuel C. Edwards. On the rate of equidistribution of expanding horospheres in finite-volume quotients of SL(2, ${\mathbb{C}}$). Journal of Modern Dynamics, 2017, 11: 155-188. doi: 10.3934/jmd.2017008

[8]

Dmitry Tamarkin. Quantization of Poisson structures on R^2. Electronic Research Announcements, 1997, 3: 119-120.

[9]

Danijela Damjanović, Anatole Katok. Periodic cycle functions and cocycle rigidity for certain partially hyperbolic $\mathbb R^k$ actions. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 985-1005. doi: 10.3934/dcds.2005.13.985

[10]

Guji Tian, Qi Wang, Chao-Jiang Xu. $C^\infty$ Local solutions of elliptical $2-$Hessian equation in $\mathbb{R}^3$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1023-1039. doi: 10.3934/dcds.2016.36.1023

[11]

Imed Bachar, Habib Mâagli. Singular solutions of a nonlinear equation in a punctured domain of $\mathbb{R}^{2}$. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 171-188. doi: 10.3934/dcdss.2019012

[12]

Myeongju Chae, Soonsik Kwon. Global well-posedness for the $L^2$-critical Hartree equation on $\mathbb{R}^n$, $n\ge 3$. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1725-1743. doi: 10.3934/cpaa.2009.8.1725

[13]

Giorgio Fusco. Layered solutions to the vector Allen-Cahn equation in $\mathbb{R}^2$. Minimizers and heteroclinic connections. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1807-1841. doi: 10.3934/cpaa.2017088

[14]

Giorgio Fusco, Francesco Leonetti, Cristina Pignotti. On the asymptotic behavior of symmetric solutions of the Allen-Cahn equation in unbounded domains in $\mathbb{R}^2$. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 725-742. doi: 10.3934/dcds.2017030

[15]

Michał Kowalczyk, Yong Liu, Frank Pacard. Towards classification of multiple-end solutions to the Allen-Cahn equation in $\mathbb{R}^2$. Networks & Heterogeneous Media, 2012, 7 (4) : 837-855. doi: 10.3934/nhm.2012.7.837

[16]

J. Colliander, M. Keel, Gigliola Staffilani, H. Takaoka, T. Tao. Resonant decompositions and the $I$-method for the cubic nonlinear Schrödinger equation on $\mathbb{R}^2$. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 665-686. doi: 10.3934/dcds.2008.21.665

[17]

Kwangseok Choe, Jongmin Han, Chang-Shou Lin. Bubbling solutions for the Chern-Simons gauged $O(3)$ sigma model in $\mathbb{R}^2$. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2703-2728. doi: 10.3934/dcds.2014.34.2703

[18]

Anatole Katok, Federico Rodriguez Hertz. Rigidity of real-analytic actions of $SL(n,\Z)$ on $\T^n$: A case of realization of Zimmer program. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 609-615. doi: 10.3934/dcds.2010.27.609

[19]

Zhenqi Jenny Wang. The twisted cohomological equation over the geodesic flow. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3923-3940. doi: 10.3934/dcds.2019158

[20]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (30)
  • HTML views (109)
  • Cited by (0)

Other articles
by authors

[Back to Top]