# American Institute of Mathematical Sciences

June  2019, 39(6): 3017-3035. doi: 10.3934/dcds.2019125

## Nonlinear Fokker–Planck equations for probability measures on path space and path-distribution dependent SDEs

 1 Center for Applied Mathematics, Tianjin University, Tianjin 300072, China 2 Department of Mathematics, Bielefeld University, D-33501 Bielefeld, Germany 3 Department of Mathematics, Swansea University, Singleton Park, SA2 8PP, United Kingdom

* Corresponding author: Feng-Yu Wang

Received  January 2018 Revised  October 2018 Published  February 2019

Fund Project: Supported by NNSFC (11801406, 11771326, 11831014, 11431014, 11726627)

By investigating path-distribution dependent stochastic differential equations, the following type of nonlinear Fokker–Planck equations for probability measures
 $(\mu_t)_{t \geq 0}$
on the path space
 ${\scr {C}}: = C([-r_0, 0];\mathbb R^d),$
is analyzed:
 $\partial_t \mu(t) = L_{t, \mu_t}^*\mu_t, \ \ t\ge 0,$
where
 $\mu(t)$
is the image of
 $\mu_t$
under the projection
 ${\scr {C}}\ni\xi\mapsto \xi(0)\in\mathbb R^d$
, and
 \begin{align*} L_{t, \mu}(\xi)&: = \frac 1 2\sum\limits_{i, j = 1}^d a_{ij}(t, \xi, \mu)\frac{\partial^2} {\partial_{\xi(0)_i} \partial_{\xi(0)_j }} \\\; &\quad +\sum\limits_{i = 1}^d b_i(t, \xi, \mu)\frac{\partial}{\partial_{\xi(0)_i}}, \ \ t\ge 0, \xi\in {\scr {C}}, \mu\in \scr P^{\scr {C}}. \end{align*}
Under reasonable conditions on the coefficients
 $a_{ij}$
and
 $b_i$
, the existence, uniqueness, Lipschitz continuity in Wasserstein distance, total variational norm and entropy, as well as derivative estimates are derived for the martingale solutions.
Citation: Xing Huang, Michael Röckner, Feng-Yu Wang. Nonlinear Fokker–Planck equations for probability measures on path space and path-distribution dependent SDEs. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3017-3035. doi: 10.3934/dcds.2019125
##### References:

show all references

##### References:
 [1] Xing Huang, Chang Liu, Feng-Yu Wang. Order preservation for path-distribution dependent SDEs. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2125-2133. doi: 10.3934/cpaa.2018100 [2] Liliana Trejo-Valencia, Edgardo Ugalde. Projective distance and $g$-measures. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3565-3579. doi: 10.3934/dcdsb.2015.20.3565 [3] Daniela De Silva, Ovidiu Savin. A note on higher regularity boundary Harnack inequality. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6155-6163. doi: 10.3934/dcds.2015.35.6155 [4] Pablo Raúl Stinga, Chao Zhang. Harnack's inequality for fractional nonlocal equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3153-3170. doi: 10.3934/dcds.2013.33.3153 [5] Giuseppe Di Fazio, Maria Stella Fanciullo, Pietro Zamboni. Harnack inequality for degenerate elliptic equations and sum operators. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2363-2376. doi: 10.3934/cpaa.2015.14.2363 [6] Michihiro Hirayama. Periodic probability measures are dense in the set of invariant measures. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1185-1192. doi: 10.3934/dcds.2003.9.1185 [7] Benedetto Piccoli, Francesco Rossi. Measure dynamics with Probability Vector Fields and sources. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6207-6230. doi: 10.3934/dcds.2019270 [8] Jinggang Tan, Jingang Xiong. A Harnack inequality for fractional Laplace equations with lower order terms. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 975-983. doi: 10.3934/dcds.2011.31.975 [9] Eleonora Bardelli, Andrea Carlo Giuseppe Mennucci. Probability measures on infinite-dimensional Stiefel manifolds. Journal of Geometric Mechanics, 2017, 9 (3) : 291-316. doi: 10.3934/jgm.2017012 [10] Xavier Cabré. Elliptic PDE's in probability and geometry: Symmetry and regularity of solutions. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 425-457. doi: 10.3934/dcds.2008.20.425 [11] Fatiha Alabau-Boussouira. On the influence of the coupling on the dynamics of single-observed cascade systems of PDE's. Mathematical Control & Related Fields, 2015, 5 (1) : 1-30. doi: 10.3934/mcrf.2015.5.1 [12] Sabine Eisenhofer, Messoud A. Efendiev, Mitsuharu Ôtani, Sabine Schulz, Hans Zischka. On an ODE-PDE coupling model of the mitochondrial swelling process. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1031-1057. doi: 10.3934/dcdsb.2015.20.1031 [13] Andrea Tosin, Paolo Frasca. Existence and approximation of probability measure solutions to models of collective behaviors. Networks & Heterogeneous Media, 2011, 6 (3) : 561-596. doi: 10.3934/nhm.2011.6.561 [14] Simon Lloyd, Edson Vargas. Critical covering maps without absolutely continuous invariant probability measure. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2393-2412. doi: 10.3934/dcds.2019101 [15] Raz Kupferman, Asaf Shachar. On strain measures and the geodesic distance to $SO_n$ in the general linear group. Journal of Geometric Mechanics, 2016, 8 (4) : 437-460. doi: 10.3934/jgm.2016015 [16] Anne-Sophie de Suzzoni. Continuity of the flow of the Benjamin-Bona-Mahony equation on probability measures. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2905-2920. doi: 10.3934/dcds.2015.35.2905 [17] Giulia Cavagnari. Regularity results for a time-optimal control problem in the space of probability measures. Mathematical Control & Related Fields, 2017, 7 (2) : 213-233. doi: 10.3934/mcrf.2017007 [18] Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043 [19] Wen Wang, Dapeng Xie, Hui Zhou. Local Aronson-Bénilan gradient estimates and Harnack inequality for the porous medium equation along Ricci flow. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1957-1974. doi: 10.3934/cpaa.2018093 [20] Simona Fornaro, Maria Sosio, Vincenzo Vespri. Harnack type inequalities for some doubly nonlinear singular parabolic equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5909-5926. doi: 10.3934/dcds.2015.35.5909

2018 Impact Factor: 1.143