    May  2019, 39(5): 2731-2742. doi: 10.3934/dcds.2019114

Explicit estimates on positive supersolutions of nonlinear elliptic equations and applications

 1 School of Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran 2 Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada

Received  May 2018 Revised  September 2018 Published  January 2019

Fund Project: The research of the second author was supported in part by NSERC

In this paper we consider positive supersolutions of the nonlinear elliptic equation
 $- \Delta u = \rho(x) f(u)|\nabla u|^p, ~~~~ {\rm{ in }}~~~~ \Omega,$
where
 $0\le p<1$
,
 $\Omega$
is an arbitrary domain (bounded or unbounded) in
 ${\mathbb{R}}^N$
(
 $N\ge 2$
),
 $f: [0, a_{f}) \rightarrow {\mathbb{R}}_{+}$
 $(0 < a_{f} \leq +\infty)$
is a non-decreasing continuous function and
 $\rho: \Omega \rightarrow \mathbb{R}$
is a positive function. Using the maximum principle we give explicit estimates on positive supersolutions
 $u$
at each point
 $x\in\Omega$
where
 $\nabla u\not\equiv0$
in a neighborhood of
 $x$
. As applications, we discuss the dead core set of supersolutions on bounded domains, and also obtain Liouville type results in unbounded domains
 $\Omega$
with the property that
 $\sup_{x\in\Omega}dist (x, \partial\Omega) = \infty$
. In particular when
 $\rho(x) = |x|^\beta$
(
 $\beta\in {\mathbb{R}}$
) and
 $f(u) = u^q$
with
 $q+p>1$
then every positive supersolution in an exterior domain is eventually constant if
 $(N-2)q+p(N-1)< N+\beta.$
Citation: Asadollah Aghajani, Craig Cowan. Explicit estimates on positive supersolutions of nonlinear elliptic equations and applications. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2731-2742. doi: 10.3934/dcds.2019114
References:
  S. Alarcon, J. Garcia-Melian and A. Quaas, Liouville type theorems for elliptic equations with gradient terms, Milan J. Math., 81 (2013), 171-185. doi: 10.1007/s00032-013-0197-z.  Google Scholar  S. Alarcon, J. Garcia-Melian and A. Quaas, Nonexistence of positive supersolutions to some nonlinear elliptic problems, J. Math. Pures Appl., 99 (2013), 618-634. doi: 10.1016/j.matpur.2012.10.001.  Google Scholar  S. Alarcon, J. Garcia-Melian and A. Quaas, Existence and non-existence of solutions to elliptic equations with a general convection term, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 225-239. doi: 10.1017/S030821051200100X.  Google Scholar  S. Alarcon, J. Garcia-Melian and A. Quaas, Keller-Osserman type conditions for some elliptic problems with gradient terms, J. Differential Equations, 252 (2012), 886-914. doi: 10.1016/j.jde.2011.09.033.  Google Scholar  D. Arcoya, C. De Coster, L. Jeanjean and K. Tanaka, Continuum of solutions for an elliptic problem with critical growth in the gradient, J. Funct. Anal., 268 (2015), 2298-2335. doi: 10.1016/j.jfa.2015.01.014.  Google Scholar  S. N. Armstrong and B. Sirakov, Nonexistence of positive supersolutions of elliptic equations via the maximum principle, Comm. Part. Diff. Eqns., 36 (2011), 2011-2047. doi: 10.1080/03605302.2010.534523.  Google Scholar  S. N. Armstrong and B. Sirakov, Liouville results for fully nonlinear elliptic equations with power growth nonlinearities, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 10 (2011), 711–728, arXiv: 1001.4489. [math.AP]. Google Scholar  H. Berestycki, F. Hamel and N. Nadirashvili, The speed of propagation for KPP type problems Ⅰ. Periodic framework, J. Europ. Math. Soc., 7 (2005), 173-213. doi: 10.4171/JEMS/26.  Google Scholar  H. Berestycki, F. Hamel and L. Rossi, Liouville type results for semilinear elliptic equations in unbounded domains, Ann. Mat. Pura Appl., (4) 186 (2007), 469–507. doi: 10.1007/s10231-006-0015-0.  Google Scholar  M. F. Bidaut-Veron, M. Garcia-Huidobro and L. Veron, Estimates of solutions of elliptic equations with a source reaction term involving the product of the function and its gradient, available at https://arXiv.org/pdf/1711.11489.pdfGoogle Scholar  M. F. Bidaut-Veron, Local and global behavior of solutions of quasilinear equations of EmdenFowler type, Arch. Rat. Mech. Anal., 107 (1989), 293-324. doi: 10.1007/BF00251552.  Google Scholar  M. F. Bidaut-Veron, M. Garcia-Huidobro and L. Veron, Local and global behavior of solutions of quasilinear equations of Emden-Fowler type, Calc. Var. Part. Diff. Equ., 54 (2015), 3471-3515. doi: 10.1007/s00526-015-0911-5.  Google Scholar  I. Birindelli and F. Demengel, Comparison principle and Liouville type results for singular fully nonlinear operators, Ann. Fac. Sci. Toulouse, 13 (2004), 261-287. doi: 10.5802/afst.1070.  Google Scholar  M. A. Burgos-Perez, J. Garcia Melian and A. Quaas, Classification of supersolutions and Liouville theorems for some nonlinear elliptic problems, Discrete Contin. Dyn. Syst., 36 (2016), 4703-4721. doi: 10.3934/dcds.2016004.  Google Scholar  G. Caristi and E. Mitidieri, Nonexistence of positive solutions of quasilinear equations, Adv. Diff. Equ., 2 (1997), 317-359. Google Scholar  H. Chen and P. Felmer, On Liouville type theorems for fully nonlinear elliptic equations with gradient term, J. Differential Equations, 255 (2013), 2167-2195. doi: 10.1016/j.jde.2013.06.009.  Google Scholar  P. Felmer, A. Quaas and B. Sirakov, Solvability of nonlinear elliptic equations with gradient terms, J. Diff. Eq., 254 (2013), 4327-4346. doi: 10.1016/j.jde.2013.03.003.  Google Scholar  R. Filippucci, Nonexistence of positive weak solutions of elliptic inequalities, Nonlinear Anal., 70 (2009), 2903-2916. doi: 10.1016/j.na.2008.12.018.  Google Scholar  L. Jeanjean and B. Sirakov, Existence and multiplicity for elliptic problems with quadratic growth in the gradient, Comm. Part. Diff. Eq., 38 (2013), 244-264. doi: 10.1080/03605302.2012.738754.  Google Scholar  L. Rossi, Non-existence of positive solutions of fully nonlinear elliptic bounded domains, Commun. Pure Appl. Anal., 7 (2008), 125-141. doi: 10.3934/cpaa.2008.7.125.  Google Scholar  J. Serrin and H. Zou, CauchyLiouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, Acta. Math., 189 (2002), 79-142. doi: 10.1007/BF02392645.  Google Scholar  L. Veron, Local and Global Aspects of Quasilinear Degenerate Elliptic Equations, Quasilinear elliptic singular problems. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017. doi: 10.1142/9850.  Google Scholar

show all references

References:
  S. Alarcon, J. Garcia-Melian and A. Quaas, Liouville type theorems for elliptic equations with gradient terms, Milan J. Math., 81 (2013), 171-185. doi: 10.1007/s00032-013-0197-z.  Google Scholar  S. Alarcon, J. Garcia-Melian and A. Quaas, Nonexistence of positive supersolutions to some nonlinear elliptic problems, J. Math. Pures Appl., 99 (2013), 618-634. doi: 10.1016/j.matpur.2012.10.001.  Google Scholar  S. Alarcon, J. Garcia-Melian and A. Quaas, Existence and non-existence of solutions to elliptic equations with a general convection term, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 225-239. doi: 10.1017/S030821051200100X.  Google Scholar  S. Alarcon, J. Garcia-Melian and A. Quaas, Keller-Osserman type conditions for some elliptic problems with gradient terms, J. Differential Equations, 252 (2012), 886-914. doi: 10.1016/j.jde.2011.09.033.  Google Scholar  D. Arcoya, C. De Coster, L. Jeanjean and K. Tanaka, Continuum of solutions for an elliptic problem with critical growth in the gradient, J. Funct. Anal., 268 (2015), 2298-2335. doi: 10.1016/j.jfa.2015.01.014.  Google Scholar  S. N. Armstrong and B. Sirakov, Nonexistence of positive supersolutions of elliptic equations via the maximum principle, Comm. Part. Diff. Eqns., 36 (2011), 2011-2047. doi: 10.1080/03605302.2010.534523.  Google Scholar  S. N. Armstrong and B. Sirakov, Liouville results for fully nonlinear elliptic equations with power growth nonlinearities, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 10 (2011), 711–728, arXiv: 1001.4489. [math.AP]. Google Scholar  H. Berestycki, F. Hamel and N. Nadirashvili, The speed of propagation for KPP type problems Ⅰ. Periodic framework, J. Europ. Math. Soc., 7 (2005), 173-213. doi: 10.4171/JEMS/26.  Google Scholar  H. Berestycki, F. Hamel and L. Rossi, Liouville type results for semilinear elliptic equations in unbounded domains, Ann. Mat. Pura Appl., (4) 186 (2007), 469–507. doi: 10.1007/s10231-006-0015-0.  Google Scholar  M. F. Bidaut-Veron, M. Garcia-Huidobro and L. Veron, Estimates of solutions of elliptic equations with a source reaction term involving the product of the function and its gradient, available at https://arXiv.org/pdf/1711.11489.pdfGoogle Scholar  M. F. Bidaut-Veron, Local and global behavior of solutions of quasilinear equations of EmdenFowler type, Arch. Rat. Mech. Anal., 107 (1989), 293-324. doi: 10.1007/BF00251552.  Google Scholar  M. F. Bidaut-Veron, M. Garcia-Huidobro and L. Veron, Local and global behavior of solutions of quasilinear equations of Emden-Fowler type, Calc. Var. Part. Diff. Equ., 54 (2015), 3471-3515. doi: 10.1007/s00526-015-0911-5.  Google Scholar  I. Birindelli and F. Demengel, Comparison principle and Liouville type results for singular fully nonlinear operators, Ann. Fac. Sci. Toulouse, 13 (2004), 261-287. doi: 10.5802/afst.1070.  Google Scholar  M. A. Burgos-Perez, J. Garcia Melian and A. Quaas, Classification of supersolutions and Liouville theorems for some nonlinear elliptic problems, Discrete Contin. Dyn. Syst., 36 (2016), 4703-4721. doi: 10.3934/dcds.2016004.  Google Scholar  G. Caristi and E. Mitidieri, Nonexistence of positive solutions of quasilinear equations, Adv. Diff. Equ., 2 (1997), 317-359. Google Scholar  H. Chen and P. Felmer, On Liouville type theorems for fully nonlinear elliptic equations with gradient term, J. Differential Equations, 255 (2013), 2167-2195. doi: 10.1016/j.jde.2013.06.009.  Google Scholar  P. Felmer, A. Quaas and B. Sirakov, Solvability of nonlinear elliptic equations with gradient terms, J. Diff. Eq., 254 (2013), 4327-4346. doi: 10.1016/j.jde.2013.03.003.  Google Scholar  R. Filippucci, Nonexistence of positive weak solutions of elliptic inequalities, Nonlinear Anal., 70 (2009), 2903-2916. doi: 10.1016/j.na.2008.12.018.  Google Scholar  L. Jeanjean and B. Sirakov, Existence and multiplicity for elliptic problems with quadratic growth in the gradient, Comm. Part. Diff. Eq., 38 (2013), 244-264. doi: 10.1080/03605302.2012.738754.  Google Scholar  L. Rossi, Non-existence of positive solutions of fully nonlinear elliptic bounded domains, Commun. Pure Appl. Anal., 7 (2008), 125-141. doi: 10.3934/cpaa.2008.7.125.  Google Scholar  J. Serrin and H. Zou, CauchyLiouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, Acta. Math., 189 (2002), 79-142. doi: 10.1007/BF02392645.  Google Scholar  L. Veron, Local and Global Aspects of Quasilinear Degenerate Elliptic Equations, Quasilinear elliptic singular problems. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017. doi: 10.1142/9850.  Google Scholar
  M. Á. Burgos-Pérez, J. García-Melián, A. Quaas. Classification of supersolutions and Liouville theorems for some nonlinear elliptic problems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4703-4721. doi: 10.3934/dcds.2016004  SYLWIA DUDEK, IWONA SKRZYPCZAK. Liouville theorems for elliptic problems in variable exponent spaces. Communications on Pure & Applied Analysis, 2017, 16 (2) : 513-532. doi: 10.3934/cpaa.2017026  Alberto Farina. Symmetry of components, Liouville-type theorems and classification results for some nonlinear elliptic systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5869-5877. doi: 10.3934/dcds.2015.35.5869  Pavol Quittner, Philippe Souplet. Parabolic Liouville-type theorems via their elliptic counterparts. Conference Publications, 2011, 2011 (Special) : 1206-1213. doi: 10.3934/proc.2011.2011.1206  Phuong Le. Liouville theorems for stable weak solutions of elliptic problems involving Grushin operator. Communications on Pure & Applied Analysis, 2020, 19 (1) : 511-525. doi: 10.3934/cpaa.2020025  Linfen Cao, Wenxiong Chen. Liouville type theorems for poly-harmonic Navier problems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 3937-3955. doi: 10.3934/dcds.2013.33.3937  Philippe Souplet. Liouville-type theorems for elliptic Schrödinger systems associated with copositive matrices. Networks & Heterogeneous Media, 2012, 7 (4) : 967-988. doi: 10.3934/nhm.2012.7.967  Xiaohui Yu. Liouville type theorem for nonlinear elliptic equation with general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4947-4966. doi: 10.3934/dcds.2014.34.4947  Tomasz Adamowicz, Przemysław Górka. The Liouville theorems for elliptic equations with nonstandard growth. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2377-2392. doi: 10.3934/cpaa.2015.14.2377  Quoc Hung Phan. Optimal Liouville-type theorems for a parabolic system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 399-409. doi: 10.3934/dcds.2015.35.399  Phuong Le. Liouville theorems for an integral equation of Choquard type. Communications on Pure & Applied Analysis, 2020, 19 (2) : 771-783. doi: 10.3934/cpaa.2020036  Xiaohui Yu. Liouville type theorems for singular integral equations and integral systems. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1825-1840. doi: 10.3934/cpaa.2016017  Dong Li, Xinwei Yu. On some Liouville type theorems for the compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4719-4733. doi: 10.3934/dcds.2014.34.4719  Italo Capuzzo Dolcetta, Antonio Vitolo. Glaeser's type gradient estimates for non-negative solutions of fully nonlinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 539-557. doi: 10.3934/dcds.2010.28.539  Chin-Chin Wu, Zhengce Zhang. Dead-core rates for the heat equation with a spatially dependent strong absorption. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2203-2210. doi: 10.3934/dcdsb.2013.18.2203  Xinfu Chen, Jong-Shenq Guo, Bei Hu. Dead-core rates for the porous medium equation with a strong absorption. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1761-1774. doi: 10.3934/dcdsb.2012.17.1761  Chunlai Mu, Jun Zhou, Yuhuan Li. Fast rate of dead core for fast diffusion equation with strong absorption. Communications on Pure & Applied Analysis, 2010, 9 (2) : 397-411. doi: 10.3934/cpaa.2010.9.397  Yutian Lei, Congming Li. Sharp criteria of Liouville type for some nonlinear systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3277-3315. doi: 10.3934/dcds.2016.36.3277  Zhijun Zhang. Large solutions of semilinear elliptic equations with a gradient term: existence and boundary behavior. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1381-1392. doi: 10.3934/cpaa.2013.12.1381  Daniela Giachetti, Francesco Petitta, Sergio Segura de León. Elliptic equations having a singular quadratic gradient term and a changing sign datum. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1875-1895. doi: 10.3934/cpaa.2012.11.1875

2018 Impact Factor: 1.143