May  2019, 39(5): 2325-2342. doi: 10.3934/dcds.2019098

Flexibility of Lyapunov exponents for expanding circle maps

Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA

Received  May 2017 Revised  July 2018 Published  January 2019

Let $ g $ be a smooth expanding map of degree $ D $ which maps a circle to itself, where $ D $ is a natural number greater than $ 1 $. It is known that the Lyapunov exponent of $ g $ with respect to the unique invariant measure that is absolutely continuous with respect to the Lebesgue measure is positive and less than or equal to $ \log D $ which, in addition, is less than or equal to the Lyapunov exponent of $ g $ with respect to the measure of maximal entropy. Moreover, the equalities can only occur simultaneously. We show that these are the only restrictions on the Lyapunov exponents considered above for smooth expanding maps of degree $ D $ on a circle.

Citation: Alena Erchenko. Flexibility of Lyapunov exponents for expanding circle maps. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2325-2342. doi: 10.3934/dcds.2019098
References:
[1]

J. Bochi, A. Katok and F. Rodrigues Hertz, Flexibility of Lyapunov exponents among conservative diffeomorphisms, preprint.Google Scholar

[2]

A. Boyarsky and M. Scarowsky, On a class of transformations which have unique absolutely continuous invariant measures, Trans. Amer. Math. Soc., 255 (1979), 243-262. doi: 10.1090/S0002-9947-1979-0542879-2. Google Scholar

[3]

A. Erchenko and A. Katok, Flexibility of entropies for surfaces of negative curvature, to appear in Israel J. Math., arXiv:1710.00079.Google Scholar

[4]

A. Góra and A. Boyarsky, Compactness of invariant densities for families of expanding, piecewise monotonic transformations, Canad. J. Math., 41 (1989), 855-869. doi: 10.4153/CJM-1989-039-8. Google Scholar

[5] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, Cambridge, 1995. doi: 10.1017/CBO9780511809187.
[6]

A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc., 186 (1973), 481-488. doi: 10.1090/S0002-9947-1973-0335758-1. Google Scholar

[7]

M. Qian, J.-S. Xie and S. Zhu, Smooth Ergodic Theory for Endomorphisms, Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-642-01954-8. Google Scholar

[8]

D. Ruelle, An inequality for the entropy of differentiable maps, Bol. Soc. Brasil. Mat., 9 (1978), 83-87. doi: 10.1007/BF02584795. Google Scholar

[9]

P. Walters, Invariant measures and equilibrium states for some mappings which expand distances, Trans. Amer. Math. Soc., 236 (1978), 121-153. doi: 10.1090/S0002-9947-1978-0466493-1. Google Scholar

show all references

References:
[1]

J. Bochi, A. Katok and F. Rodrigues Hertz, Flexibility of Lyapunov exponents among conservative diffeomorphisms, preprint.Google Scholar

[2]

A. Boyarsky and M. Scarowsky, On a class of transformations which have unique absolutely continuous invariant measures, Trans. Amer. Math. Soc., 255 (1979), 243-262. doi: 10.1090/S0002-9947-1979-0542879-2. Google Scholar

[3]

A. Erchenko and A. Katok, Flexibility of entropies for surfaces of negative curvature, to appear in Israel J. Math., arXiv:1710.00079.Google Scholar

[4]

A. Góra and A. Boyarsky, Compactness of invariant densities for families of expanding, piecewise monotonic transformations, Canad. J. Math., 41 (1989), 855-869. doi: 10.4153/CJM-1989-039-8. Google Scholar

[5] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, Cambridge, 1995. doi: 10.1017/CBO9780511809187.
[6]

A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc., 186 (1973), 481-488. doi: 10.1090/S0002-9947-1973-0335758-1. Google Scholar

[7]

M. Qian, J.-S. Xie and S. Zhu, Smooth Ergodic Theory for Endomorphisms, Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-642-01954-8. Google Scholar

[8]

D. Ruelle, An inequality for the entropy of differentiable maps, Bol. Soc. Brasil. Mat., 9 (1978), 83-87. doi: 10.1007/BF02584795. Google Scholar

[9]

P. Walters, Invariant measures and equilibrium states for some mappings which expand distances, Trans. Amer. Math. Soc., 236 (1978), 121-153. doi: 10.1090/S0002-9947-1978-0466493-1. Google Scholar

Figure 1.  A representative of the SUSD-circle maps of degree $ 2 $
[1]

Rafael De La Llave, Michael Shub, Carles Simó. Entropy estimates for a family of expanding maps of the circle. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 597-608. doi: 10.3934/dcdsb.2008.10.597

[2]

Malo Jézéquel. Parameter regularity of dynamical determinants of expanding maps of the circle and an application to linear response. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 927-958. doi: 10.3934/dcds.2019039

[3]

Arno Berger, Roland Zweimüller. Invariant measures for general induced maps and towers. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 3885-3901. doi: 10.3934/dcds.2013.33.3885

[4]

Xavier Bressaud. Expanding interval maps with intermittent behaviour, physical measures and time scales. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 517-546. doi: 10.3934/dcds.2004.11.517

[5]

Alejo Barrio Blaya, Víctor Jiménez López. On the relations between positive Lyapunov exponents, positive entropy, and sensitivity for interval maps. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 433-466. doi: 10.3934/dcds.2012.32.433

[6]

Carlangelo Liverani. A footnote on expanding maps. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3741-3751. doi: 10.3934/dcds.2013.33.3741

[7]

Xueting Tian, Paulo Varandas. Topological entropy of level sets of empirical measures for non-uniformly expanding maps. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5407-5431. doi: 10.3934/dcds.2017235

[8]

Peter Haïssinsky, Kevin M. Pilgrim. An algebraic characterization of expanding Thurston maps. Journal of Modern Dynamics, 2012, 6 (4) : 451-476. doi: 10.3934/jmd.2012.6.451

[9]

Peter Haïssinsky, Kevin M. Pilgrim. Examples of coarse expanding conformal maps. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2403-2416. doi: 10.3934/dcds.2012.32.2403

[10]

José F. Alves. Stochastic behavior of asymptotically expanding maps. Conference Publications, 2001, 2001 (Special) : 14-21. doi: 10.3934/proc.2001.2001.14

[11]

Yushi Nakano, Shota Sakamoto. Spectra of expanding maps on Besov spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1779-1797. doi: 10.3934/dcds.2019077

[12]

Liviana Palmisano. Unbounded regime for circle maps with a flat interval. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2099-2122. doi: 10.3934/dcds.2015.35.2099

[13]

Yongluo Cao, Stefano Luzzatto, Isabel Rios. Some non-hyperbolic systems with strictly non-zero Lyapunov exponents for all invariant measures: Horseshoes with internal tangencies. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 61-71. doi: 10.3934/dcds.2006.15.61

[14]

Yakov Pesin, Samuel Senti. Equilibrium measures for maps with inducing schemes. Journal of Modern Dynamics, 2008, 2 (3) : 397-430. doi: 10.3934/jmd.2008.2.397

[15]

Vítor Araújo, Ali Tahzibi. Physical measures at the boundary of hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 849-876. doi: 10.3934/dcds.2008.20.849

[16]

Lucas Backes, Aaron Brown, Clark Butler. Continuity of Lyapunov exponents for cocycles with invariant holonomies. Journal of Modern Dynamics, 2018, 12: 223-260. doi: 10.3934/jmd.2018009

[17]

Michael Blank. Finite rank approximations of expanding maps with neutral singularities. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 749-762. doi: 10.3934/dcds.2008.21.749

[18]

Antonio Pumariño, José Ángel Rodríguez, Enrique Vigil. Renormalizable Expanding Baker Maps: Coexistence of strange attractors. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1651-1678. doi: 10.3934/dcds.2017068

[19]

Xu Zhang, Yuming Shi, Guanrong Chen. Coupled-expanding maps under small perturbations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1291-1307. doi: 10.3934/dcds.2011.29.1291

[20]

Viviane Baladi, Daniel Smania. Smooth deformations of piecewise expanding unimodal maps. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 685-703. doi: 10.3934/dcds.2009.23.685

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (171)
  • HTML views (142)
  • Cited by (0)

Other articles
by authors

[Back to Top]