April  2019, 39(4): 2173-2185. doi: 10.3934/dcds.2019091

Exponential stabilization of the stochastic Burgers equation by boundary proportional feedback

Alexandru Ioan Cuza University, Department of Mathematics, Octav Mayer Institute of Mathematics (Romanian Academy), 700506 Iaşi, Romania

Received  May 2018 Revised  September 2018 Published  January 2019

Fund Project: This work was supported by a grant of the "Alexandru Ioan Cuza" University of Iasi, within the Research Grants program, Grant UAIC, code GI-UAIC-2018-03

In the present paper it is designed a simple, finite-dimensional, linear deterministic stabilizing boundary feedback law for the stochastic Burgers equation with unbounded time-dependent coefficients. The stability of the system is guaranteed no matter how large the level of the noise is.

Citation: Ionuţ Munteanu. Exponential stabilization of the stochastic Burgers equation by boundary proportional feedback. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2173-2185. doi: 10.3934/dcds.2019091
References:
[1]

V. Barbu and M. Rockner, Global solutions to random 3D vorticity equations for small initial data, J. Diff. Equations, 263 (2017), 5395-5411. doi: 10.1016/j.jde.2017.06.020. Google Scholar

[2]

V. Barbu, Boundary stabilization of equilibrium solutions to parabolic equations, IEEE Trans. Autom. Control, 58 (2013), 2416-2420. doi: 10.1109/TAC.2013.2254013. Google Scholar

[3]

V. Barbu and G. Da Prato, Internal stabilization by noise of the Navier–Stokes equation, SIAM J. Control Optimiz., 49(1) (2012), 1-0. Google Scholar

[4]

V. Barbu, Viorel, I. Lasiecka and R. Triggiani, Tangential boundary stabilization of Navier-Stokes equations, Mem. Amer. Math. Soc., 181 (2006), x+128 pp. doi: 10.1090/memo/0852. Google Scholar

[5]

V. BarbuI. Lasiecka and R. Triggiani, Abstract settings for tangential boundary stabilization of Navier-Stokes equations by high- and low-gain feedback controllers, Nonlinear Anal., 64 (2006), 2704-2746. doi: 10.1016/j.na.2005.09.012. Google Scholar

[6]

T. A. Burton, Stability by Fixed Point Theory for Functional Differential Equations, Dover Publications, Inc., New York, 2006.Google Scholar

[7]

H. ChoiR. TemamP. Moin and J. Kim, Feedback control for unsteady flow and its application to the stochastic Burgers equation, J. Fluid Mech., 253 (1993), 509-543. doi: 10.1017/S0022112093001880. Google Scholar

[8]

G. Da Prato and A. Debussche, Dynamic programming for the stochastic Burgers equation, Ann. Mat. Pura Appl., 178 (2000), 143-174. doi: 10.1007/BF02505893. Google Scholar

[9]

G. Da Prato and A. Debussche, Control of the stochastic Burgers model of turbulence, SIAM J. Control Optimiz., 37 (1999), 1123-1149. doi: 10.1137/S0363012996311307. Google Scholar

[10]

G. Da PratoA. Debussche and R. Temam, Stochastic Burgers' equation, Nonlin. Diff. Equations Appl., 1 (1994), 389-402. doi: 10.1007/BF01194987. Google Scholar

[11]

M. Foondun and E. Nualart, On the behaviour of stochastic heat equations on bounded domains, Latin Amer. J. Probab. Math. Statistics, 12 (2015), 551-571. Google Scholar

[12]

I. Gyongy and D. Nualart, On the stochastic Burgers equation in the real line, Annals of Probab., 27 (1999), 782-802. doi: 10.1214/aop/1022677386. Google Scholar

[13]

M. Krstic, On global stabilization of Burgers' equation by boundary control, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171), (1998). doi: 10.1109/CDC.1998.758248. Google Scholar

[14]

W.-J. Liu and M. Krstic, Backstepping boundary control of Burgers equation with actuator dynamics, Syst. Control Lett., 41 (2000), 291-303. doi: 10.1016/S0167-6911(00)00068-2. Google Scholar

[15]

H. LiuP. Hu and I. Munteanu, Boundary feedback stabilization of Fisher's equation, Syst. Control Lett., 97 (2016), 55-60. doi: 10.1016/j.sysconle.2016.09.003. Google Scholar

[16]

J. Luo, Fixed points and exponential stability of mild solutions of stochastic partial differential equations with delays, J. Math. Anal. Appl., 342 (2008), 753-760. doi: 10.1016/j.jmaa.2007.11.019. Google Scholar

[17]

I. Munteanu, Boundary stabilization of the stochastic heat equation by proportional feedbacks, Automatica, 87 (2018), 152-158. doi: 10.1016/j.automatica.2017.10.003. Google Scholar

[18]

I. Munteanu, Boundary stabilisation to non-stationary solutions for deterministic and stochastic parabolic-type equations, Int. J. Control, 2017. doi: 10.1080/00207179.2017.1407878. Google Scholar

[19]

I. Munteanu, Stabilisation of parabolic semilinear equations, Int. J. Control, 90 (2017), 1063-1076. doi: 10.1080/00207179.2016.1200747. Google Scholar

[20]

I. Munteanu, Boundary stabilization of the phase field system by finite-dimensional feedback controllers, J. Math. Anal. Appl., 412 (2014), 964-975. doi: 10.1016/j.jmaa.2013.11.018. Google Scholar

[21]

I. Munteanu, Boundary stabilization of the Navier–Stokes equation with fading memory, Int. J. Control, 88 (2015), 531-542. doi: 10.1080/00207179.2014.964780. Google Scholar

[22]

I. Munteanu, Stabilization of semilinear heat equations, with fading memory, by boundary feedbacks, J. Diff. Equations, 259 (2015), 454-472. doi: 10.1016/j.jde.2015.02.010. Google Scholar

[23]

I. Munteanu, Boundary stabilization of a 2-D periodic MHD channel flow, by proportional feedbacks, ESAIM: COCV, 23 (2017), 1253-1266. doi: 10.1051/cocv/2016025. Google Scholar

[24]

I. Munteanu, Stabilization of a 3-D periodic channel flow by explicit normal boundary feedbacks, J. Dynam. Control Syst., 23 (2017), 387-403. doi: 10.1007/s10883-016-9332-9. Google Scholar

show all references

References:
[1]

V. Barbu and M. Rockner, Global solutions to random 3D vorticity equations for small initial data, J. Diff. Equations, 263 (2017), 5395-5411. doi: 10.1016/j.jde.2017.06.020. Google Scholar

[2]

V. Barbu, Boundary stabilization of equilibrium solutions to parabolic equations, IEEE Trans. Autom. Control, 58 (2013), 2416-2420. doi: 10.1109/TAC.2013.2254013. Google Scholar

[3]

V. Barbu and G. Da Prato, Internal stabilization by noise of the Navier–Stokes equation, SIAM J. Control Optimiz., 49(1) (2012), 1-0. Google Scholar

[4]

V. Barbu, Viorel, I. Lasiecka and R. Triggiani, Tangential boundary stabilization of Navier-Stokes equations, Mem. Amer. Math. Soc., 181 (2006), x+128 pp. doi: 10.1090/memo/0852. Google Scholar

[5]

V. BarbuI. Lasiecka and R. Triggiani, Abstract settings for tangential boundary stabilization of Navier-Stokes equations by high- and low-gain feedback controllers, Nonlinear Anal., 64 (2006), 2704-2746. doi: 10.1016/j.na.2005.09.012. Google Scholar

[6]

T. A. Burton, Stability by Fixed Point Theory for Functional Differential Equations, Dover Publications, Inc., New York, 2006.Google Scholar

[7]

H. ChoiR. TemamP. Moin and J. Kim, Feedback control for unsteady flow and its application to the stochastic Burgers equation, J. Fluid Mech., 253 (1993), 509-543. doi: 10.1017/S0022112093001880. Google Scholar

[8]

G. Da Prato and A. Debussche, Dynamic programming for the stochastic Burgers equation, Ann. Mat. Pura Appl., 178 (2000), 143-174. doi: 10.1007/BF02505893. Google Scholar

[9]

G. Da Prato and A. Debussche, Control of the stochastic Burgers model of turbulence, SIAM J. Control Optimiz., 37 (1999), 1123-1149. doi: 10.1137/S0363012996311307. Google Scholar

[10]

G. Da PratoA. Debussche and R. Temam, Stochastic Burgers' equation, Nonlin. Diff. Equations Appl., 1 (1994), 389-402. doi: 10.1007/BF01194987. Google Scholar

[11]

M. Foondun and E. Nualart, On the behaviour of stochastic heat equations on bounded domains, Latin Amer. J. Probab. Math. Statistics, 12 (2015), 551-571. Google Scholar

[12]

I. Gyongy and D. Nualart, On the stochastic Burgers equation in the real line, Annals of Probab., 27 (1999), 782-802. doi: 10.1214/aop/1022677386. Google Scholar

[13]

M. Krstic, On global stabilization of Burgers' equation by boundary control, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171), (1998). doi: 10.1109/CDC.1998.758248. Google Scholar

[14]

W.-J. Liu and M. Krstic, Backstepping boundary control of Burgers equation with actuator dynamics, Syst. Control Lett., 41 (2000), 291-303. doi: 10.1016/S0167-6911(00)00068-2. Google Scholar

[15]

H. LiuP. Hu and I. Munteanu, Boundary feedback stabilization of Fisher's equation, Syst. Control Lett., 97 (2016), 55-60. doi: 10.1016/j.sysconle.2016.09.003. Google Scholar

[16]

J. Luo, Fixed points and exponential stability of mild solutions of stochastic partial differential equations with delays, J. Math. Anal. Appl., 342 (2008), 753-760. doi: 10.1016/j.jmaa.2007.11.019. Google Scholar

[17]

I. Munteanu, Boundary stabilization of the stochastic heat equation by proportional feedbacks, Automatica, 87 (2018), 152-158. doi: 10.1016/j.automatica.2017.10.003. Google Scholar

[18]

I. Munteanu, Boundary stabilisation to non-stationary solutions for deterministic and stochastic parabolic-type equations, Int. J. Control, 2017. doi: 10.1080/00207179.2017.1407878. Google Scholar

[19]

I. Munteanu, Stabilisation of parabolic semilinear equations, Int. J. Control, 90 (2017), 1063-1076. doi: 10.1080/00207179.2016.1200747. Google Scholar

[20]

I. Munteanu, Boundary stabilization of the phase field system by finite-dimensional feedback controllers, J. Math. Anal. Appl., 412 (2014), 964-975. doi: 10.1016/j.jmaa.2013.11.018. Google Scholar

[21]

I. Munteanu, Boundary stabilization of the Navier–Stokes equation with fading memory, Int. J. Control, 88 (2015), 531-542. doi: 10.1080/00207179.2014.964780. Google Scholar

[22]

I. Munteanu, Stabilization of semilinear heat equations, with fading memory, by boundary feedbacks, J. Diff. Equations, 259 (2015), 454-472. doi: 10.1016/j.jde.2015.02.010. Google Scholar

[23]

I. Munteanu, Boundary stabilization of a 2-D periodic MHD channel flow, by proportional feedbacks, ESAIM: COCV, 23 (2017), 1253-1266. doi: 10.1051/cocv/2016025. Google Scholar

[24]

I. Munteanu, Stabilization of a 3-D periodic channel flow by explicit normal boundary feedbacks, J. Dynam. Control Syst., 23 (2017), 387-403. doi: 10.1007/s10883-016-9332-9. Google Scholar

[1]

Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1421-1434. doi: 10.3934/dcdsb.2016003

[2]

Peter I. Kogut, Olha P. Kupenko. On optimal control problem for an ill-posed strongly nonlinear elliptic equation with $p$-Laplace operator and $L^1$-type of nonlinearity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1273-1295. doi: 10.3934/dcdsb.2019016

[3]

Jong Uhn Kim. On the stochastic Burgers equation with a polynomial nonlinearity in the real line. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 835-866. doi: 10.3934/dcdsb.2006.6.835

[4]

Yan Wang, Guanggan Chen. Invariant measure of stochastic fractional Burgers equation with degenerate noise on a bounded interval. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3121-3135. doi: 10.3934/cpaa.2019140

[5]

Anya Désilles, Hélène Frankowska. Explicit construction of solutions to the Burgers equation with discontinuous initial-boundary conditions. Networks & Heterogeneous Media, 2013, 8 (3) : 727-744. doi: 10.3934/nhm.2013.8.727

[6]

Behzad Azmi, Karl Kunisch. Receding horizon control for the stabilization of the wave equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 449-484. doi: 10.3934/dcds.2018021

[7]

Marek Fila, Kazuhiro Ishige, Tatsuki Kawakami. Convergence to the Poisson kernel for the Laplace equation with a nonlinear dynamical boundary condition. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1285-1301. doi: 10.3934/cpaa.2012.11.1285

[8]

Kim Dang Phung. Boundary stabilization for the wave equation in a bounded cylindrical domain. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1057-1093. doi: 10.3934/dcds.2008.20.1057

[9]

Alexei A. Ilyin. Lower bounds for the spectrum of the Laplace and Stokes operators. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 131-146. doi: 10.3934/dcds.2010.28.131

[10]

András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon. Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks & Heterogeneous Media, 2012, 7 (1) : 43-58. doi: 10.3934/nhm.2012.7.43

[11]

Chun-Hsiung Hsia, Xiaoming Wang. On a Burgers' type equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1121-1139. doi: 10.3934/dcdsb.2006.6.1121

[12]

Diogo Poças, Bartosz Protas. Transient growth in stochastic Burgers flows. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2371-2391. doi: 10.3934/dcdsb.2018052

[13]

Andrei Fursikov, Lyubov Shatina. Nonlocal stabilization by starting control of the normal equation generated by Helmholtz system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1187-1242. doi: 10.3934/dcds.2018050

[14]

Nguyen Dinh Cong, Roberta Fabbri. On the spectrum of the one-dimensional Schrödinger operator. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 541-554. doi: 10.3934/dcdsb.2008.9.541

[15]

Hui Yin, Huijiang Zhao. Nonlinear stability of boundary layer solutions for generalized Benjamin-Bona-Mahony-Burgers equation in the half space. Kinetic & Related Models, 2009, 2 (3) : 521-550. doi: 10.3934/krm.2009.2.521

[16]

Joachim von Below, Gaëlle Pincet Mailly, Jean-François Rault. Growth order and blow up points for the parabolic Burgers' equation under dynamical boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 825-836. doi: 10.3934/dcdss.2013.6.825

[17]

Harbir Antil, Mahamadi Warma. Optimal control of the coefficient for the regional fractional $p$-Laplace equation: Approximation and convergence. Mathematical Control & Related Fields, 2019, 9 (1) : 1-38. doi: 10.3934/mcrf.2019001

[18]

Roman Chapko, B. Tomas Johansson. An alternating boundary integral based method for a Cauchy problem for the Laplace equation in semi-infinite regions. Inverse Problems & Imaging, 2008, 2 (3) : 317-333. doi: 10.3934/ipi.2008.2.317

[19]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[20]

Fulvia Confortola, Elisa Mastrogiacomo. Optimal control for stochastic heat equation with memory. Evolution Equations & Control Theory, 2014, 3 (1) : 35-58. doi: 10.3934/eect.2014.3.35

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (42)
  • HTML views (45)
  • Cited by (0)

Other articles
by authors

[Back to Top]