# American Institute of Mathematical Sciences

April  2019, 39(4): 1685-1730. doi: 10.3934/dcds.2019074

## Riccati equations for linear Hamiltonian systems without controllability condition

 Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic

Dedicated to the memory of Professor Russell A. Johnson.

Received  August 2017 Revised  July 2018 Published  January 2019

Fund Project: This research was supported by the Czech Science Foundation under grant GA16-00611S

In this paper we develop new theory of Riccati matrix differential equations for linear Hamiltonian systems, which do not require any controllability assumption. When the system is nonoscillatory, it is known from our previous work that conjoined bases of the system with eventually the same image form a special structure called a genus. We show that for every such a genus there is an associated Riccati equation. We study the properties of symmetric solutions of these Riccati equations and their connection with conjoined bases of the system. For a given genus, we pay a special attention to distinguished solutions at infinity of the associated Riccati equation and their relationship with the principal solutions at infinity of the system in the considered genus. We show the uniqueness of the distinguished solution at infinity of the Riccati equation corresponding to the minimal genus. This study essentially extends and completes the work of W. T. Reid (1964, 1972), W. A. Coppel (1971), P. Hartman (1964), W. Kratz (1995), and other authors who considered the Riccati equation and its distinguished solution at infinity for invertible conjoined bases, i.e., for the maximal genus in our setting.

Citation: Peter Šepitka. Riccati equations for linear Hamiltonian systems without controllability condition. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1685-1730. doi: 10.3934/dcds.2019074
##### References:

show all references

##### References:
 [1] Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225 [2] Laura Olian Fannio. Multiple periodic solutions of Hamiltonian systems with strong resonance at infinity. Discrete & Continuous Dynamical Systems - A, 1997, 3 (2) : 251-264. doi: 10.3934/dcds.1997.3.251 [3] Brian D. O. Anderson, Shaoshuai Mou, A. Stephen Morse, Uwe Helmke. Decentralized gradient algorithm for solution of a linear equation. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 319-328. doi: 10.3934/naco.2016014 [4] Alain Bensoussan, Shaokuan Chen, Suresh P. Sethi. Linear quadratic differential games with mixed leadership: The open-loop solution. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 95-108. doi: 10.3934/naco.2013.3.95 [5] Zhirong He, Weinian Zhang. Critical periods of a periodic annulus linking to equilibria at infinity in a cubic system. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 841-854. doi: 10.3934/dcds.2009.24.841 [6] Jin Feng He, Wei Xu, Zhi Guo Feng, Xinsong Yang. On the global optimal solution for linear quadratic problems of switched system. Journal of Industrial & Management Optimization, 2019, 15 (2) : 817-832. doi: 10.3934/jimo.2018072 [7] Iryna Pankratova, Andrey Piatnitski. On the behaviour at infinity of solutions to stationary convection-diffusion equation in a cylinder. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 935-970. doi: 10.3934/dcdsb.2009.11.935 [8] Fang Liu. An inhomogeneous evolution equation involving the normalized infinity Laplacian with a transport term. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2395-2421. doi: 10.3934/cpaa.2018114 [9] Mohameden Ahmedou, Mohamed Ben Ayed, Marcello Lucia. On a resonant mean field type equation: A "critical point at Infinity" approach. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1789-1818. doi: 10.3934/dcds.2017075 [10] José Caicedo, Alfonso Castro, Arturo Sanjuán. Bifurcation at infinity for a semilinear wave equation with non-monotone nonlinearity. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1857-1865. doi: 10.3934/dcds.2017078 [11] Goro Akagi, Kazumasa Suzuki. On a certain degenerate parabolic equation associated with the infinity-laplacian. Conference Publications, 2007, 2007 (Special) : 18-27. doi: 10.3934/proc.2007.2007.18 [12] Defei Zhang, Ping He. Functional solution about stochastic differential equation driven by $G$-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 281-293. doi: 10.3934/dcdsb.2015.20.281 [13] Luis Barreira, Claudia Valls. Topological conjugacies and behavior at infinity. Communications on Pure & Applied Analysis, 2014, 13 (2) : 687-701. doi: 10.3934/cpaa.2014.13.687 [14] A. Domoshnitsky. About maximum principles for one of the components of solution vector and stability for systems of linear delay differential equations. Conference Publications, 2011, 2011 (Special) : 373-380. doi: 10.3934/proc.2011.2011.373 [15] Victor S. Kozyakin, Alexander M. Krasnosel’skii, Dmitrii I. Rachinskii. Arnold tongues for bifurcation from infinity. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 107-116. doi: 10.3934/dcdss.2008.1.107 [16] Victor Kozyakin, Alexander M. Krasnosel’skii, Dmitrii Rachinskii. Asymptotics of the Arnold tongues in problems at infinity. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 989-1011. doi: 10.3934/dcds.2008.20.989 [17] Erik Lindgren, Peter Lindqvist. Infinity-harmonic potentials and their streamlines. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4731-4746. doi: 10.3934/dcds.2019192 [18] Yinbin Deng, Yi Li, Wei Shuai. Existence of solutions for a class of p-Laplacian type equation with critical growth and potential vanishing at infinity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 683-699. doi: 10.3934/dcds.2016.36.683 [19] Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099 [20] Giuseppe Maria Coclite, Lorenzo di Ruvo. A note on the convergence of the solution of the Novikov equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2865-2899. doi: 10.3934/dcdsb.2018290

2018 Impact Factor: 1.143