January  2019, 39(1): 345-367. doi: 10.3934/dcds.2019014

Convergence and stability of generalized gradient systems by Łojasiewicz inequality with application in continuum Kuramoto model

1. 

Department of Mathematics and Institute for Advanced Study in Mathematics, Harbin Institute of Technology, Harbin 150001, China

2. 

Department of Mathematics, Harbin Institute of Technology, Harbin, 150001, China

3. 

Department of Mathematics, Suihua University, Suihua 152000, China

* Corresponding author: Xiaoping Xue

Received  January 2018 Revised  July 2018 Published  October 2018

Fund Project: This work was supported by NSF of China grants 11731010 and 11671109

The existence and uniqueness/multiplicity of phase locked solution for continuum Kuramoto model was studied in [12,29]. However, its asymptotic behavior is still unknown. In this paper we concern the asymptotic property of classic solutions to continuum Kuramoto model. In particular, we prove the convergence towards a phase locked state and its stability, provided suitable initial data and coupling strength. The main strategy is the quasi-gradient flow approach based on Łojasiewicz inequality. For this aim, we establish a Łojasiewicz type inequality in infinite dimensions for continuum Kuramoto model which is a nonlocal integro-differential equation. General theorems for convergence and stability of (generalized) quasi-gradient system in an abstract setting are also provided based on Łojasiewicz inequality.

Citation: Zhuchun Li, Yi Liu, Xiaoping Xue. Convergence and stability of generalized gradient systems by Łojasiewicz inequality with application in continuum Kuramoto model. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 345-367. doi: 10.3934/dcds.2019014
References:
[1]

J. J. AcebronL. L. BonillaC. J. Perez-VicenteF. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137-185. Google Scholar

[2]

D. BenedettoE. Caglioti and U. Montemagno, Exponential dephasing of oscillators in the kinetic Kuramoto model, J. Stat. Phys., 162 (2016), 813-823. doi: 10.1007/s10955-015-1426-3. Google Scholar

[3]

D. BenedettoE. Caglioti and U. Montemagno, On the complete phase synchronization for the Kuramoto model in the mean-field limit, Comm. Math. Sci., 13 (2015), 1775-1786. doi: 10.4310/CMS.2015.v13.n7.a6. Google Scholar

[4]

J. A. CarrilloY.-P. ChoiS.-Y. HaM.-J. Kang and Y. Kim, Contractivity of transport distances for the kinetic Kuramoto equation, J. Stat. Phys., 156 (2014), 395-415. doi: 10.1007/s10955-014-1005-z. Google Scholar

[5]

R. Chill, On the Lojasiewicz-Simon gradient inequality, J. Funct. Anal., 201 (2003), 572-601. doi: 10.1016/S0022-1236(02)00102-7. Google Scholar

[6]

Y. P. ChoiS. -Y. HaS. Jung and Y. Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Physica D, 241 (2012), 735-754. doi: 10.1016/j.physd.2011.11.011. Google Scholar

[7]

Y.-P. ChoiZ. LiS.-Y. HaX. Xue and S.-B. Yun, Complete entrainment of Kuramoto oscillators with inertia on networks via gradient-like flow, J. Diff. Eqs., 257 (2014), 2591-2621. doi: 10.1016/j.jde.2014.05.054. Google Scholar

[8]

H. Dietert, Stability and bifurcation for the Kuramoto model, J. Math. Pures Appl., 105 (2016), 451-489. doi: 10.1002/cpa.21741. Google Scholar

[9]

H. DietertB. Fernandez and D. Gérard-Varet, Landau damping to partially locked states in the Kuramoto model, Comm. Pure Appl. Math., 71 (2018), 953-993. doi: 10.4310/CMS.2013.v11.n2.a7. Google Scholar

[10]

J.-G. Dong and X. Xue, Synchronization analysis of Kuramoto oscillators, Commun. Math. Sci., 11 (2013), 465-480. doi: 10.4310/CMS.2013.v11.n2.a7. Google Scholar

[11]

F. Dörfler and F. Bullo, On the critical coupling for Kuramoto oscillator, SIAM. J. Appl. Dyn. Syst., 10 (2011), 1070-1099. doi: 10.1137/10081530X. Google Scholar

[12]

G. B. Ermentrout, Synchronization in a pool of mutually coupled oscillators with random frequencies, J. Math. Bio., 22 (1985), 1-9. doi: 10.1007/BF00276542. Google Scholar

[13]

S. Y. HaT. Ha and J. H. Kim, On the complete synchronization of the Kuramoto phase model, Physica D, 239 (2010), 1692-1700. doi: 10.1016/j.physd.2010.05.003. Google Scholar

[14]

S.-Y. HaZ. Li and X. Xue, Formation of phase-locked states in a population of locally interacting Kuramoto oscillators, J. Diff. Eqs., 255 (2013), 3053-3070. doi: 10.1016/j.jde.2013.07.013. Google Scholar

[15]

A. Haraux and M. A. Jendoubi, The Łojasiewicz gradient inequality in the infinite-dimensional Hilbert space framework, J. Funct. Anal., 260 (2011), 2826-2842. doi: 10.1016/j.jfa.2011.01.012. Google Scholar

[16]

S.-B. Hsu, Ordinary differential equations with applications, WorldScientific, Singapore, (2006), 31-33.Google Scholar

[17]

Y. Kuromoto, International symposium on mathematical problems in mathematical physics, Lect. Notes Theoret. Phys., 30 (1975), 420.Google Scholar

[18]

Y. Kuromoto, Chemical Oscillations, Waves and Turbulence, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69689-3. Google Scholar

[19]

Z. Li and X. Xue, Convergence of analytic gradient-type systems with periodicity and its applications in Kuramoto models, Applied Mathematics Letters, 2018. doi: 10.1016/j.aml.2018.10.015. Google Scholar

[20]

Z. Li, X. Xue and D. Yu, On the Łojasiewicz exponent of Kuramoto model, J. Math. Phys., 56 (2015), 0227041, 20pp. doi: 10.1063/1.4908104. Google Scholar

[21]

Z. LiX. Xue and D. Yu, Synchronization and tansient stability in power grids based on Łojasiewicz inequalities, SIAM J. Control Optim., 52 (2014), 2482-2511. doi: 10.1137/130950604. Google Scholar

[22]

S. Łojasiewicz, Une propriété topologique des sous-ensembles analytiques réels, in Les Équations aux Dérivées Partielles, Éditions du Centre National de la Recherche Scientifique, Paris, (1963), 87-89. Google Scholar

[23]

L. Lovász and B. Szegedy, Limits of dense graph sequences, J. Combin. Theory Ser. B, 96 (2006), 933-957. doi: 10.1016/j.jctb.2006.05.002. Google Scholar

[24]

G. S. Medvedev, The nonlinear heat equation on W-random graphs, Arch. Rational Mech. Anal., 212 (2014), 781-803. doi: 10.1007/s00205-013-0706-9. Google Scholar

[25]

G. S. Medvedev, Small-world networks of Kuramoto oscillators, Physica D, 266 (2014), 13-22. doi: 10.1016/j.physd.2013.09.008. Google Scholar

[26]

E. Ott and T. M. Antonsen, Low dimensional behavior of large systems of globally coupled oscillators, Chaos, 18 (2008), 037113, 6pp doi: 10.1063/1.2930766. Google Scholar

[27]

S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Phsica D, 143 (2000), 1-20. doi: 10.1016/S0167-2789(00)00094-4. Google Scholar

[28]

S. H. Strogatz and J. Mirollo, Stability of incoherence in a population of coupled oscillators, J. Statist. Phys., 63 (1991), 613-635. doi: 10.1007/BF01029202. Google Scholar

[29]

W. C. Troy, Existence and exact multiplicity of phaselocked solutions of a Kuramoto model of mutually coupled oscillators, SIAM J. Appl. Math., 75 (2015), 1745-1760. doi: 10.1137/15100309X. Google Scholar

[30]

J. L. van Hemmen and W. F. Wreszinski, Lyapunov function for the Kuramoto model of nonlinearly coupled oscillators, J. Stat. Phys., 72 (1993), 145-166. Google Scholar

show all references

References:
[1]

J. J. AcebronL. L. BonillaC. J. Perez-VicenteF. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137-185. Google Scholar

[2]

D. BenedettoE. Caglioti and U. Montemagno, Exponential dephasing of oscillators in the kinetic Kuramoto model, J. Stat. Phys., 162 (2016), 813-823. doi: 10.1007/s10955-015-1426-3. Google Scholar

[3]

D. BenedettoE. Caglioti and U. Montemagno, On the complete phase synchronization for the Kuramoto model in the mean-field limit, Comm. Math. Sci., 13 (2015), 1775-1786. doi: 10.4310/CMS.2015.v13.n7.a6. Google Scholar

[4]

J. A. CarrilloY.-P. ChoiS.-Y. HaM.-J. Kang and Y. Kim, Contractivity of transport distances for the kinetic Kuramoto equation, J. Stat. Phys., 156 (2014), 395-415. doi: 10.1007/s10955-014-1005-z. Google Scholar

[5]

R. Chill, On the Lojasiewicz-Simon gradient inequality, J. Funct. Anal., 201 (2003), 572-601. doi: 10.1016/S0022-1236(02)00102-7. Google Scholar

[6]

Y. P. ChoiS. -Y. HaS. Jung and Y. Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Physica D, 241 (2012), 735-754. doi: 10.1016/j.physd.2011.11.011. Google Scholar

[7]

Y.-P. ChoiZ. LiS.-Y. HaX. Xue and S.-B. Yun, Complete entrainment of Kuramoto oscillators with inertia on networks via gradient-like flow, J. Diff. Eqs., 257 (2014), 2591-2621. doi: 10.1016/j.jde.2014.05.054. Google Scholar

[8]

H. Dietert, Stability and bifurcation for the Kuramoto model, J. Math. Pures Appl., 105 (2016), 451-489. doi: 10.1002/cpa.21741. Google Scholar

[9]

H. DietertB. Fernandez and D. Gérard-Varet, Landau damping to partially locked states in the Kuramoto model, Comm. Pure Appl. Math., 71 (2018), 953-993. doi: 10.4310/CMS.2013.v11.n2.a7. Google Scholar

[10]

J.-G. Dong and X. Xue, Synchronization analysis of Kuramoto oscillators, Commun. Math. Sci., 11 (2013), 465-480. doi: 10.4310/CMS.2013.v11.n2.a7. Google Scholar

[11]

F. Dörfler and F. Bullo, On the critical coupling for Kuramoto oscillator, SIAM. J. Appl. Dyn. Syst., 10 (2011), 1070-1099. doi: 10.1137/10081530X. Google Scholar

[12]

G. B. Ermentrout, Synchronization in a pool of mutually coupled oscillators with random frequencies, J. Math. Bio., 22 (1985), 1-9. doi: 10.1007/BF00276542. Google Scholar

[13]

S. Y. HaT. Ha and J. H. Kim, On the complete synchronization of the Kuramoto phase model, Physica D, 239 (2010), 1692-1700. doi: 10.1016/j.physd.2010.05.003. Google Scholar

[14]

S.-Y. HaZ. Li and X. Xue, Formation of phase-locked states in a population of locally interacting Kuramoto oscillators, J. Diff. Eqs., 255 (2013), 3053-3070. doi: 10.1016/j.jde.2013.07.013. Google Scholar

[15]

A. Haraux and M. A. Jendoubi, The Łojasiewicz gradient inequality in the infinite-dimensional Hilbert space framework, J. Funct. Anal., 260 (2011), 2826-2842. doi: 10.1016/j.jfa.2011.01.012. Google Scholar

[16]

S.-B. Hsu, Ordinary differential equations with applications, WorldScientific, Singapore, (2006), 31-33.Google Scholar

[17]

Y. Kuromoto, International symposium on mathematical problems in mathematical physics, Lect. Notes Theoret. Phys., 30 (1975), 420.Google Scholar

[18]

Y. Kuromoto, Chemical Oscillations, Waves and Turbulence, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69689-3. Google Scholar

[19]

Z. Li and X. Xue, Convergence of analytic gradient-type systems with periodicity and its applications in Kuramoto models, Applied Mathematics Letters, 2018. doi: 10.1016/j.aml.2018.10.015. Google Scholar

[20]

Z. Li, X. Xue and D. Yu, On the Łojasiewicz exponent of Kuramoto model, J. Math. Phys., 56 (2015), 0227041, 20pp. doi: 10.1063/1.4908104. Google Scholar

[21]

Z. LiX. Xue and D. Yu, Synchronization and tansient stability in power grids based on Łojasiewicz inequalities, SIAM J. Control Optim., 52 (2014), 2482-2511. doi: 10.1137/130950604. Google Scholar

[22]

S. Łojasiewicz, Une propriété topologique des sous-ensembles analytiques réels, in Les Équations aux Dérivées Partielles, Éditions du Centre National de la Recherche Scientifique, Paris, (1963), 87-89. Google Scholar

[23]

L. Lovász and B. Szegedy, Limits of dense graph sequences, J. Combin. Theory Ser. B, 96 (2006), 933-957. doi: 10.1016/j.jctb.2006.05.002. Google Scholar

[24]

G. S. Medvedev, The nonlinear heat equation on W-random graphs, Arch. Rational Mech. Anal., 212 (2014), 781-803. doi: 10.1007/s00205-013-0706-9. Google Scholar

[25]

G. S. Medvedev, Small-world networks of Kuramoto oscillators, Physica D, 266 (2014), 13-22. doi: 10.1016/j.physd.2013.09.008. Google Scholar

[26]

E. Ott and T. M. Antonsen, Low dimensional behavior of large systems of globally coupled oscillators, Chaos, 18 (2008), 037113, 6pp doi: 10.1063/1.2930766. Google Scholar

[27]

S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Phsica D, 143 (2000), 1-20. doi: 10.1016/S0167-2789(00)00094-4. Google Scholar

[28]

S. H. Strogatz and J. Mirollo, Stability of incoherence in a population of coupled oscillators, J. Statist. Phys., 63 (1991), 613-635. doi: 10.1007/BF01029202. Google Scholar

[29]

W. C. Troy, Existence and exact multiplicity of phaselocked solutions of a Kuramoto model of mutually coupled oscillators, SIAM J. Appl. Math., 75 (2015), 1745-1760. doi: 10.1137/15100309X. Google Scholar

[30]

J. L. van Hemmen and W. F. Wreszinski, Lyapunov function for the Kuramoto model of nonlinearly coupled oscillators, J. Stat. Phys., 72 (1993), 145-166. Google Scholar

[1]

Yuri Latushkin, Valerian Yurov. Stability estimates for semigroups on Banach spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5203-5216. doi: 10.3934/dcds.2013.33.5203

[2]

Alain Haraux. Some applications of the Łojasiewicz gradient inequality. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2417-2427. doi: 10.3934/cpaa.2012.11.2417

[3]

Hayato Chiba, Georgi S. Medvedev. The mean field analysis of the kuramoto model on graphs Ⅱ. asymptotic stability of the incoherent state, center manifold reduction, and bifurcations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3897-3921. doi: 10.3934/dcds.2019157

[4]

Ren-You Zhong, Nan-Jing Huang. Strict feasibility for generalized mixed variational inequality in reflexive Banach spaces. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 261-274. doi: 10.3934/naco.2011.1.261

[5]

Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. Uniform stability and mean-field limit for the augmented Kuramoto model. Networks & Heterogeneous Media, 2018, 13 (2) : 297-322. doi: 10.3934/nhm.2018013

[6]

B. S. Lee, Arif Rafiq. Strong convergence of an implicit iteration process for a finite family of Lipschitz $\phi -$uniformly pseudocontractive mappings in Banach spaces. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 287-293. doi: 10.3934/naco.2014.4.287

[7]

Earl Berkson. Fourier analysis methods in operator ergodic theory on super-reflexive Banach spaces. Electronic Research Announcements, 2010, 17: 90-103. doi: 10.3934/era.2010.17.90

[8]

Mustapha Mokhtar-Kharroubi. On permanent regimes for non-autonomous linear evolution equations in Banach spaces with applications to transport theory. Kinetic & Related Models, 2010, 3 (3) : 473-499. doi: 10.3934/krm.2010.3.473

[9]

Sonja Cox, Arnulf Jentzen, Ryan Kurniawan, Primož Pušnik. On the mild Itô formula in Banach spaces. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2217-2243. doi: 10.3934/dcdsb.2018232

[10]

Felipe Alvarez, Juan Peypouquet. Asymptotic equivalence and Kobayashi-type estimates for nonautonomous monotone operators in Banach spaces. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1109-1128. doi: 10.3934/dcds.2009.25.1109

[11]

Pavel Krejčí, Songmu Zheng. Pointwise asymptotic convergence of solutions for a phase separation model. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 1-18. doi: 10.3934/dcds.2006.16.1

[12]

Liping Pang, Fanyun Meng, Jinhe Wang. Asymptotic convergence of stationary points of stochastic multiobjective programs with parametric variational inequality constraint via SAA approach. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1653-1675. doi: 10.3934/jimo.2018116

[13]

Xing Wang, Nan-Jing Huang. Stability analysis for set-valued vector mixed variational inequalities in real reflexive Banach spaces. Journal of Industrial & Management Optimization, 2013, 9 (1) : 57-74. doi: 10.3934/jimo.2013.9.57

[14]

Young-Pil Choi, Seung-Yeal Ha, Seok-Bae Yun. Global existence and asymptotic behavior of measure valued solutions to the kinetic Kuramoto--Daido model with inertia. Networks & Heterogeneous Media, 2013, 8 (4) : 943-968. doi: 10.3934/nhm.2013.8.943

[15]

Goro Akagi, Mitsuharu Ôtani. Evolution equations and subdifferentials in Banach spaces. Conference Publications, 2003, 2003 (Special) : 11-20. doi: 10.3934/proc.2003.2003.11

[16]

Chun-Hsiung Hsia, Chang-Yeol Jung, Bongsuk Kwon. On the global convergence of frequency synchronization for Kuramoto and Winfree oscillators. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3319-3334. doi: 10.3934/dcdsb.2018322

[17]

Piotr Gwiazda, Piotr Minakowski, Agnieszka Świerczewska-Gwiazda. On the anisotropic Orlicz spaces applied in the problems of continuum mechanics. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1291-1306. doi: 10.3934/dcdss.2013.6.1291

[18]

Seung-Yeal Ha, Yongduck Kim, Zhuchun Li. Asymptotic synchronous behavior of Kuramoto type models with frustrations. Networks & Heterogeneous Media, 2014, 9 (1) : 33-64. doi: 10.3934/nhm.2014.9.33

[19]

Fatihcan M. Atay, Lavinia Roncoroni. Lumpability of linear evolution Equations in Banach spaces. Evolution Equations & Control Theory, 2017, 6 (1) : 15-34. doi: 10.3934/eect.2017002

[20]

Viviane Baladi, Sébastien Gouëzel. Banach spaces for piecewise cone-hyperbolic maps. Journal of Modern Dynamics, 2010, 4 (1) : 91-137. doi: 10.3934/jmd.2010.4.91

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (71)
  • HTML views (115)
  • Cited by (0)

Other articles
by authors

[Back to Top]