January  2019, 39(1): 1-18. doi: 10.3934/dcds.2019001

Markov-Dyck shifts, neutral periodic points and topological conjugacy

1. 

Institut für Angewandte Mathematik, Universität Heidelberg, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany

2. 

Department of Mathematics, Joetsu University of Education, Joetsu 943 - 8512, Japan

Received  May 2017 Revised  June 2018 Published  October 2018

We study the neutral periodic points of Markov-Dyck shifts of finite strongly connected directed graphs. Under certain hypothesis on the structure of the graphs $G$ we show, that the topological conjugacy of their Markov-Dyck shifts implies the isomorphism of the graphs.

Citation: Wolfgang Krieger, Kengo Matsumoto. Markov-Dyck shifts, neutral periodic points and topological conjugacy. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 1-18. doi: 10.3934/dcds.2019001
References:
[1]

A. Costa and B. Steinberg, A categorical invariant of flow equivalence of shifts, Ergod. Th. & Dynam. Sys., 36 (2016), 470-513. doi: 10.1017/etds.2014.74. Google Scholar

[2]

G. Gordon and E. McMahon, A greedoid polynomial which distinguishes rooted arborescences, Proc. AMS., 107 (1989), 287-298. doi: 10.1090/S0002-9939-1989-0967486-0. Google Scholar

[3]

T. Hamachi and K. Inoue, Embeddings of shifts of finite type into the Dyck shift, Monatsh. Math., 145 (2005), 107-129. doi: 10.1007/s00605-004-0297-5. Google Scholar

[4]

T. HamachiK. Inoue and W. Krieger, Subsystems of finite type and semigroup invariants of subshifts, J. reine angew. Math., 632 (2009), 37-61. doi: 10.1515/CRELLE.2009.049. Google Scholar

[5]

T. Hamachi and W. Krieger, A construction of subshifts and a class of semigroups, arXiv: 1303.4158 [math.DS]Google Scholar

[6]

B. P. Kitchens, Symbolic Dynamics, Springer, Berlin, Heidelberg, New York, 1998. Google Scholar

[7]

W. Krieger, On the uniqueness of the equilibrium state, Math. Systems Theory, 8 (1974), 97-104. doi: 10.1007/BF01762180. Google Scholar

[8]

W. Krieger, On a syntactically defined invariant of symbolic dynamics, Ergod. Th. & Dynam.Sys, 10 (2000), 501-506. doi: 10.1017/S0143385700000249. Google Scholar

[9]

W. Krieger, On subshifts and semigroups, Bull. London Math. Soc., 38 (2006), 617-624. doi: 10.1112/S0024609306018625. Google Scholar

[10]

W. Krieger, On flow equivalence of R-graph shifts, Münster J. Math., 8 (2015), 229-239. Google Scholar

[11]

W. Krieger, On subshift presentations, Ergod. Th. & Dynam. Sys, 37 (2017), 1253-1290. doi: 10.1017/etds.2015.82. Google Scholar

[12]

W. Krieger and K. Matsumoto, Zeta functions and topological entropy of the Markov-Dyck shifts, Münster J. Math., 4 (2011), 171-184. Google Scholar

[13]

W. Krieger and K. Matsumoto, A notion of synchronization of symbolic dynamics and a class of C*-algebras, Acta Appl. Math., 126 (2013), 263-275. doi: 10.1007/s10440-013-9817-4. Google Scholar

[14]

M. V. Lawson, Inverse Semigroups, World Scientific, Sigapure, New Jersey, London and Hong Kong, 1998. doi: 10.1142/9789812816689. Google Scholar

[15]

D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995. Google Scholar

[16]

K. Matsumoto, C*-algebras arising from Dyck systems of topological Markov chains, Math. Scand., 109 (2011), 31-54. doi: 10.7146/math.scand.a-15176. Google Scholar

[17]

K. Matsumoto, A certain synchronizing property of subshifts and flow equivalence, Israel J. Math., 196 (2013), 235-272. doi: 10.1007/s11856-012-0159-0. Google Scholar

[18]

M. Nivat and J.-F. Perrot, Une généralisation du monoîde bicyclique, C. R. Acad. Sc. Paris, 271 (1970), 824-827. Google Scholar

[19]

D. Perrin, Algebraic combinatorics on words, Algebraic Combinatorics and Computer Science, H.Crapo, G.-C.Rota, Eds. Springer, 2001, 391-427. Google Scholar

show all references

References:
[1]

A. Costa and B. Steinberg, A categorical invariant of flow equivalence of shifts, Ergod. Th. & Dynam. Sys., 36 (2016), 470-513. doi: 10.1017/etds.2014.74. Google Scholar

[2]

G. Gordon and E. McMahon, A greedoid polynomial which distinguishes rooted arborescences, Proc. AMS., 107 (1989), 287-298. doi: 10.1090/S0002-9939-1989-0967486-0. Google Scholar

[3]

T. Hamachi and K. Inoue, Embeddings of shifts of finite type into the Dyck shift, Monatsh. Math., 145 (2005), 107-129. doi: 10.1007/s00605-004-0297-5. Google Scholar

[4]

T. HamachiK. Inoue and W. Krieger, Subsystems of finite type and semigroup invariants of subshifts, J. reine angew. Math., 632 (2009), 37-61. doi: 10.1515/CRELLE.2009.049. Google Scholar

[5]

T. Hamachi and W. Krieger, A construction of subshifts and a class of semigroups, arXiv: 1303.4158 [math.DS]Google Scholar

[6]

B. P. Kitchens, Symbolic Dynamics, Springer, Berlin, Heidelberg, New York, 1998. Google Scholar

[7]

W. Krieger, On the uniqueness of the equilibrium state, Math. Systems Theory, 8 (1974), 97-104. doi: 10.1007/BF01762180. Google Scholar

[8]

W. Krieger, On a syntactically defined invariant of symbolic dynamics, Ergod. Th. & Dynam.Sys, 10 (2000), 501-506. doi: 10.1017/S0143385700000249. Google Scholar

[9]

W. Krieger, On subshifts and semigroups, Bull. London Math. Soc., 38 (2006), 617-624. doi: 10.1112/S0024609306018625. Google Scholar

[10]

W. Krieger, On flow equivalence of R-graph shifts, Münster J. Math., 8 (2015), 229-239. Google Scholar

[11]

W. Krieger, On subshift presentations, Ergod. Th. & Dynam. Sys, 37 (2017), 1253-1290. doi: 10.1017/etds.2015.82. Google Scholar

[12]

W. Krieger and K. Matsumoto, Zeta functions and topological entropy of the Markov-Dyck shifts, Münster J. Math., 4 (2011), 171-184. Google Scholar

[13]

W. Krieger and K. Matsumoto, A notion of synchronization of symbolic dynamics and a class of C*-algebras, Acta Appl. Math., 126 (2013), 263-275. doi: 10.1007/s10440-013-9817-4. Google Scholar

[14]

M. V. Lawson, Inverse Semigroups, World Scientific, Sigapure, New Jersey, London and Hong Kong, 1998. doi: 10.1142/9789812816689. Google Scholar

[15]

D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995. Google Scholar

[16]

K. Matsumoto, C*-algebras arising from Dyck systems of topological Markov chains, Math. Scand., 109 (2011), 31-54. doi: 10.7146/math.scand.a-15176. Google Scholar

[17]

K. Matsumoto, A certain synchronizing property of subshifts and flow equivalence, Israel J. Math., 196 (2013), 235-272. doi: 10.1007/s11856-012-0159-0. Google Scholar

[18]

M. Nivat and J.-F. Perrot, Une généralisation du monoîde bicyclique, C. R. Acad. Sc. Paris, 271 (1970), 824-827. Google Scholar

[19]

D. Perrin, Algebraic combinatorics on words, Algebraic Combinatorics and Computer Science, H.Crapo, G.-C.Rota, Eds. Springer, 2001, 391-427. Google Scholar

Figure 1.  $G(1, 0, 2, 0, \dots)$
Figure 2.  $G(1, (1, 0, 3, 0, \dots))$
Figure 3.  $G_{2, 3}(4.1)$
Figure 4.  $G_{3.2}(4.1)$
[1]

Kengo Matsumoto. On the Markov-Dyck shifts of vertex type. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 403-422. doi: 10.3934/dcds.2016.36.403

[2]

Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68.

[3]

Marian Gidea, Yitzchak Shmalo. Combinatorial approach to detection of fixed points, periodic orbits, and symbolic dynamics. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6123-6148. doi: 10.3934/dcds.2018264

[4]

Mario Roy, Mariusz Urbański. Random graph directed Markov systems. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 261-298. doi: 10.3934/dcds.2011.30.261

[5]

Adriano Da Silva, Alexandre J. Santana, Simão N. Stelmastchuk. Topological conjugacy of linear systems on Lie groups. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3411-3421. doi: 10.3934/dcds.2017144

[6]

Steven T. Piantadosi. Symbolic dynamics on free groups. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 725-738. doi: 10.3934/dcds.2008.20.725

[7]

Mario Roy, Mariusz Urbański. Multifractal analysis for conformal graph directed Markov systems. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 627-650. doi: 10.3934/dcds.2009.25.627

[8]

James Kingsbery, Alex Levin, Anatoly Preygel, Cesar E. Silva. Dynamics of the $p$-adic shift and applications. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 209-218. doi: 10.3934/dcds.2011.30.209

[9]

Jim Wiseman. Symbolic dynamics from signed matrices. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 621-638. doi: 10.3934/dcds.2004.11.621

[10]

George Osipenko, Stephen Campbell. Applied symbolic dynamics: attractors and filtrations. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 43-60. doi: 10.3934/dcds.1999.5.43

[11]

Michael Hochman. A note on universality in multidimensional symbolic dynamics. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 301-314. doi: 10.3934/dcdss.2009.2.301

[12]

Fritz Colonius, Alexandre J. Santana. Topological conjugacy for affine-linear flows and control systems. Communications on Pure & Applied Analysis, 2011, 10 (3) : 847-857. doi: 10.3934/cpaa.2011.10.847

[13]

Ming-Chia Li, Ming-Jiea Lyu. Topological conjugacy for Lipschitz perturbations of non-autonomous systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5011-5024. doi: 10.3934/dcds.2016017

[14]

Álvaro Castañeda, Gonzalo Robledo. Dichotomy spectrum and almost topological conjugacy on nonautonomus unbounded difference systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2287-2304. doi: 10.3934/dcds.2018094

[15]

Wei Lin, Jianhong Wu, Guanrong Chen. Generalized snap-back repeller and semi-conjugacy to shift operators of piecewise continuous transformations. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 103-119. doi: 10.3934/dcds.2007.19.103

[16]

Kingshook Biswas. Complete conjugacy invariants of nonlinearizable holomorphic dynamics. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 847-856. doi: 10.3934/dcds.2010.26.847

[17]

Chris Good, Sergio Macías. What is topological about topological dynamics?. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1007-1031. doi: 10.3934/dcds.2018043

[18]

Amin Boumenir, Vu Kim Tuan. Reconstruction of the coefficients of a star graph from observations of its vertices. Inverse Problems & Imaging, 2018, 12 (6) : 1293-1308. doi: 10.3934/ipi.2018054

[19]

Mario Roy. A new variation of Bowen's formula for graph directed Markov systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2533-2551. doi: 10.3934/dcds.2012.32.2533

[20]

Jose S. Cánovas, Tönu Puu, Manuel Ruiz Marín. Detecting chaos in a duopoly model via symbolic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 269-278. doi: 10.3934/dcdsb.2010.13.269

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (126)
  • HTML views (116)
  • Cited by (0)

Other articles
by authors

[Back to Top]