September  2018, 38(9): 4727-4744. doi: 10.3934/dcds.2018208

How chaotic is an almost mean equicontinuous system?

1. 

School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China

2. 

Einstein Institute of Mathematics, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel

Received  January 2018 Revised  March 2018 Published  June 2018

Fund Project: Research of Jie Li was supported by China Postdoctoral Science Foundation (Grant no. 2017M611026), NNSF of China (Grant no. 11701231), NSF of Jiangsu Province (Grant no. BK20170225) and Science Foundation of Jiangsu Normal University (Grant no. 17XLR011)

The question how chaotic is an almost mean equicontinuous system is addressed. It is shown that every topological dynamical system can be embedded into an almost mean equicontinuous system with the same entropy which is an almost one-to-one extension of some mean equicontinuous system. Besides, there is an almost mean equicontinous system that is topologically K and Devaney chaotic, and as this consequence we know that every ergodic measure of such a topologically K system does not have full support.

Citation: Jie Li. How chaotic is an almost mean equicontinuous system?. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4727-4744. doi: 10.3934/dcds.2018208
References:
[1]

E. Akin, J. Auslander and K. Berg, When is a transitive map chaotic?, Convergence in Ergodic Theory and Probability, de Gruyter, Berlin, 5 (1996), 25–40. Google Scholar

[2]

E. Akin and S. Kolyada, Li-Yorke sensitivity, Nonlinearity, 16 (2003), 1421-1433. doi: 10.1088/0951-7715/16/4/313. Google Scholar

[3]

J. Auslander, Minimal Flows and Their Extensions, North-Holland Mathematics Studies, 153 North-Holland, Amsterdam, 1988. Google Scholar

[4]

L. Barreira, Ergodic Theory, Hyperbolic Dynamics and Dimension Theory, Universitext, Springer, 2012. doi: 10.1007/978-3-642-28090-0. Google Scholar

[5]

F. Blanchard, Fully positive topological entropy and topological mixing, in Symbolic Dynamics and its Applications, Contemporary Mathematics, 135 (1992), 95–105. doi: 10.1090/conm/135/1185082. Google Scholar

[6]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414. doi: 10.1090/S0002-9947-1971-0274707-X. Google Scholar

[7]

R. Devaney, An Introduction to Chaotic Dynamical Systems, Addison-Wesley Studies in Nonlinearity 2$^{\text{nd}}$ edition, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1989, Studies in Nonlinearity. Westview Press, Boulder, CO, 2003. Google Scholar

[8]

F. García-Ramos, Weak forms of topological and measure theoretical equicontinuity: Relationships with discrete spectrum and sequence entropy, Ergodic Theory Dynam. Systems, 37 (2017), 1211-1237. doi: 10.1017/etds.2015.83. Google Scholar

[9]

F. García-Ramos, J. Li and R. Zhang, When is a dynamical system mean sensitive?, Ergodic Theory Dynam. Systems, 2017, arXiv: 1708.01987. doi: 10.1017/etds.2017.101. Google Scholar

[10]

P. Halmos and J. Von Neumann, Operator methods in classical mechanics, Ⅱ, Ann. of Math. (2), 43 (1942), 332-350. doi: 10.2307/1968872. Google Scholar

[11]

W. HuangH. Li and X. Ye, Family independence for topological and measurable dynamics, Trans. Amer. Math. Soc., 364 (2012), 5209-5242. doi: 10.1090/S0002-9947-2012-05493-6. Google Scholar

[12]

W. HuangK. Park and X. Ye, Topological disjointness from entropy zero systems, Bull. Soc. Math. France, 135 (2007), 259-282. doi: 10.24033/bsmf.2534. Google Scholar

[13]

W. Huang and X. Ye, A local variational relation and applications, Israel J. Math., 151 (2006), 237-279. doi: 10.1007/BF02777364. Google Scholar

[14]

J. Li and S. Tu, On proximality with Banach density one, J. Math. Anal. Appl., 416 (2014), 36-51. doi: 10.1016/j.jmaa.2014.02.021. Google Scholar

[15]

J. LiS. Tu and X. Ye, Mean equicontinuity and mean sensitivity, Ergodic Theory Dynam. Systems, 35 (2015), 2587-2612. doi: 10.1017/etds.2014.41. Google Scholar

[16]

J. Li and X. Ye, Recent development of chaos theory in topological dynamics, Acta Math. Sin. (Engl. Ser.), 32 (2016), 83-114. doi: 10.1007/s10114-015-4574-0. Google Scholar

[17]

S. Li, $ω$-chaos and topological entropy, Trans. Amer. Math. Soc., 339 (1993), 243-249. doi: 10.1090/S0002-9947-1993-1108612-8. Google Scholar

[18]

S. Tu, Some Notions of Topological Dynamics in the Mean Sense, Nilsystem and Generalised Polynomial, Ph. D thesis, University of Science and Technology of China, 2014.Google Scholar

[19]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79 Springer-Verlag, New York-Berlin, 1982. Google Scholar

show all references

References:
[1]

E. Akin, J. Auslander and K. Berg, When is a transitive map chaotic?, Convergence in Ergodic Theory and Probability, de Gruyter, Berlin, 5 (1996), 25–40. Google Scholar

[2]

E. Akin and S. Kolyada, Li-Yorke sensitivity, Nonlinearity, 16 (2003), 1421-1433. doi: 10.1088/0951-7715/16/4/313. Google Scholar

[3]

J. Auslander, Minimal Flows and Their Extensions, North-Holland Mathematics Studies, 153 North-Holland, Amsterdam, 1988. Google Scholar

[4]

L. Barreira, Ergodic Theory, Hyperbolic Dynamics and Dimension Theory, Universitext, Springer, 2012. doi: 10.1007/978-3-642-28090-0. Google Scholar

[5]

F. Blanchard, Fully positive topological entropy and topological mixing, in Symbolic Dynamics and its Applications, Contemporary Mathematics, 135 (1992), 95–105. doi: 10.1090/conm/135/1185082. Google Scholar

[6]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414. doi: 10.1090/S0002-9947-1971-0274707-X. Google Scholar

[7]

R. Devaney, An Introduction to Chaotic Dynamical Systems, Addison-Wesley Studies in Nonlinearity 2$^{\text{nd}}$ edition, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1989, Studies in Nonlinearity. Westview Press, Boulder, CO, 2003. Google Scholar

[8]

F. García-Ramos, Weak forms of topological and measure theoretical equicontinuity: Relationships with discrete spectrum and sequence entropy, Ergodic Theory Dynam. Systems, 37 (2017), 1211-1237. doi: 10.1017/etds.2015.83. Google Scholar

[9]

F. García-Ramos, J. Li and R. Zhang, When is a dynamical system mean sensitive?, Ergodic Theory Dynam. Systems, 2017, arXiv: 1708.01987. doi: 10.1017/etds.2017.101. Google Scholar

[10]

P. Halmos and J. Von Neumann, Operator methods in classical mechanics, Ⅱ, Ann. of Math. (2), 43 (1942), 332-350. doi: 10.2307/1968872. Google Scholar

[11]

W. HuangH. Li and X. Ye, Family independence for topological and measurable dynamics, Trans. Amer. Math. Soc., 364 (2012), 5209-5242. doi: 10.1090/S0002-9947-2012-05493-6. Google Scholar

[12]

W. HuangK. Park and X. Ye, Topological disjointness from entropy zero systems, Bull. Soc. Math. France, 135 (2007), 259-282. doi: 10.24033/bsmf.2534. Google Scholar

[13]

W. Huang and X. Ye, A local variational relation and applications, Israel J. Math., 151 (2006), 237-279. doi: 10.1007/BF02777364. Google Scholar

[14]

J. Li and S. Tu, On proximality with Banach density one, J. Math. Anal. Appl., 416 (2014), 36-51. doi: 10.1016/j.jmaa.2014.02.021. Google Scholar

[15]

J. LiS. Tu and X. Ye, Mean equicontinuity and mean sensitivity, Ergodic Theory Dynam. Systems, 35 (2015), 2587-2612. doi: 10.1017/etds.2014.41. Google Scholar

[16]

J. Li and X. Ye, Recent development of chaos theory in topological dynamics, Acta Math. Sin. (Engl. Ser.), 32 (2016), 83-114. doi: 10.1007/s10114-015-4574-0. Google Scholar

[17]

S. Li, $ω$-chaos and topological entropy, Trans. Amer. Math. Soc., 339 (1993), 243-249. doi: 10.1090/S0002-9947-1993-1108612-8. Google Scholar

[18]

S. Tu, Some Notions of Topological Dynamics in the Mean Sense, Nilsystem and Generalised Polynomial, Ph. D thesis, University of Science and Technology of China, 2014.Google Scholar

[19]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79 Springer-Verlag, New York-Berlin, 1982. Google Scholar

[1]

Joseph Auslander, Xiongping Dai. Minimality, distality and equicontinuity for semigroup actions on compact Hausdorff spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4647-4711. doi: 10.3934/dcds.2019190

[2]

Felipe García-Ramos, Brian Marcus. Mean sensitive, mean equicontinuous and almost periodic functions for dynamical systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 729-746. doi: 10.3934/dcds.2019030

[3]

Michel Coornaert, Fabrice Krieger. Mean topological dimension for actions of discrete amenable groups. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 779-793. doi: 10.3934/dcds.2005.13.779

[4]

Dou Dou. Minimal subshifts of arbitrary mean topological dimension. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1411-1424. doi: 10.3934/dcds.2017058

[5]

Vladimír Špitalský. Entropy and exact Devaney chaos on totally regular continua. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3135-3152. doi: 10.3934/dcds.2013.33.3135

[6]

Thaís Jordão, Xingping Sun. General types of spherical mean operators and $K$-functionals of fractional orders. Communications on Pure & Applied Analysis, 2015, 14 (3) : 743-757. doi: 10.3934/cpaa.2015.14.743

[7]

Qinian Jin, YanYan Li. Starshaped compact hypersurfaces with prescribed $k$-th mean curvature in hyperbolic space. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 367-377. doi: 10.3934/dcds.2006.15.367

[8]

Hailong Zhu, Jifeng Chu, Weinian Zhang. Mean-square almost automorphic solutions for stochastic differential equations with hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1935-1953. doi: 10.3934/dcds.2018078

[9]

Gabriella Tarantello. Analytical, geometrical and topological aspects of a class of mean field equations on surfaces. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 931-973. doi: 10.3934/dcds.2010.28.931

[10]

Franco Obersnel, Pierpaolo Omari. On a result of C.V. Coffman and W.K. Ziemer about the prescribed mean curvature equation. Conference Publications, 2011, 2011 (Special) : 1138-1147. doi: 10.3934/proc.2011.2011.1138

[11]

Jaroslav Smítal, Marta Štefánková. Omega-chaos almost everywhere. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1323-1327. doi: 10.3934/dcds.2003.9.1323

[12]

Michael Hutchings. Mean action and the Calabi invariant. Journal of Modern Dynamics, 2016, 10: 511-539. doi: 10.3934/jmd.2016.10.511

[13]

Franco Flandoli, Matti Leimbach. Mean field limit with proliferation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3029-3052. doi: 10.3934/dcdsb.2016086

[14]

Hélène Hibon, Ying Hu, Yiqing Lin, Peng Luo, Falei Wang. Quadratic BSDEs with mean reflection. Mathematical Control & Related Fields, 2018, 8 (3&4) : 721-738. doi: 10.3934/mcrf.2018031

[15]

Thai Son Doan, Martin Rasmussen, Peter E. Kloeden. The mean-square dichotomy spectrum and a bifurcation to a mean-square attractor. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 875-887. doi: 10.3934/dcdsb.2015.20.875

[16]

Tobias H. Colding and Bruce Kleiner. Singularity structure in mean curvature flow of mean-convex sets. Electronic Research Announcements, 2003, 9: 121-124.

[17]

Jingzhen Liu, Ka Fai Cedric Yiu, Alain Bensoussan. The optimal mean variance problem with inflation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 185-203. doi: 10.3934/dcdsb.2016.21.185

[18]

Cheng Wang. The primitive equations formulated in mean vorticity. Conference Publications, 2003, 2003 (Special) : 880-887. doi: 10.3934/proc.2003.2003.880

[19]

José G. Llorente. Mean value properties and unique continuation. Communications on Pure & Applied Analysis, 2015, 14 (1) : 185-199. doi: 10.3934/cpaa.2015.14.185

[20]

Linh V. Nguyen. Spherical mean transform: A PDE approach. Inverse Problems & Imaging, 2013, 7 (1) : 243-252. doi: 10.3934/ipi.2013.7.243

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (92)
  • HTML views (73)
  • Cited by (0)

Other articles
by authors

[Back to Top]