August  2018, 38(8): 4203-4229. doi: 10.3934/dcds.2018183

Convergence rates in homogenization of higher-order parabolic systems

1. 

School of Mathematical Science, Anhui University, Hefei 230601, China

2. 

Department of Mathematics, Nanjing University, Nanjing 210093, China

* Corresponding author: Yao Xu

Received  January 2018 Published  May 2018

This paper is concerned with the optimal convergence rate in homogenization of higher order parabolic systems with bounded measurable, rapidly oscillating periodic coefficients. The sharp $O(\varepsilon )$ convergence rate in the space $L^2(0, T; H^{m-1}(\Omega ))$ is obtained for both the initial-Dirichlet problem and the initial-Neumann problem. The duality argument inspired by [25] is used here.

Citation: Weisheng Niu, Yao Xu. Convergence rates in homogenization of higher-order parabolic systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4203-4229. doi: 10.3934/dcds.2018183
References:
[1]

S. N. Armstrong, A. Bordas and J. C. Mourrat, Quantitative stochastic homogenization and regularity theory of parabolic equations, preprint, arXiv: 1705.07672.Google Scholar

[2]

M. Avellaneda and F. Lin, Compactness methods in the theory of homogenization, Comm. Pure Appl. Math., 40 (1987), 803-847. doi: 10.1002/cpa.3160400607. Google Scholar

[3] A. BensoussanJ. L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, vol. 5, North-Holland Publishing Company Amsterdam, 1978. Google Scholar
[4]

S. Byun and Y. Jang, Calderón-Zygmund estimate for homogenization of parabolic systems, Discrete Contin. Dyn. Syst., 36 (2016), 6689-6714. doi: 10.3934/dcds.2016091. Google Scholar

[5]

H. Dong and H. Zhang, Conormal problem of higher-order parabolic systems with time irregular coefficients, Trans. Amer. Math. Soc., 368 (2016), 7413-7460. doi: 10.1090/tran/6605. Google Scholar

[6]

J. Geng and Z. Shen, Uniform regularity estimates in parabolic homogenization, Indiana Univ. Math. J., 64 (2015), 697-733. doi: 10.1512/iumj.2015.64.5503. Google Scholar

[7]

J. Geng and Z. Shen, Convergence rates in parabolic homogenization with time-dependent periodic coefficients, J. Funct. Anal., 272 (2017), 2092-2113. doi: 10.1016/j.jfa.2016.10.005. Google Scholar

[8]

G. Griso, Error estimate and unfolding for periodic homogenization, Asymptot. Anal., 40 (2004), 269-286. Google Scholar

[9]

S. Gu, Convergence rates in homogenization of Stokes systems, J. Differential Equations, 260 (2016), 5796-5815. doi: 10.1016/j.jde.2015.12.017. Google Scholar

[10] V. V. JikovS. M. Kozlov and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer Berlin Heidelberg, 1994. doi: 10.1007/978-3-642-84659-5. Google Scholar
[11]

C. E. KenigF. Lin and Z. Shen, Convergence rates in $L^2$ for elliptic homogenization problems, Arch. Ration. Mech. Anal., 203 (2012), 1009-1036. doi: 10.1007/s00205-011-0469-0. Google Scholar

[12]

C. E. KenigF. Lin and Z. Shen, Homogenization of elliptic systems with {N}eumann boundary conditions, J. Amer. Math. Soc., 26 (2013), 901-937. doi: 10.1090/S0894-0347-2013-00769-9. Google Scholar

[13]

C. E. KenigF. Lin and Z. Shen, Periodic homogenization of Green and Neumann functions, Comm. Pure Appl. Math., 67 (2014), 1219-1262. doi: 10.1002/cpa.21482. Google Scholar

[14]

A. A. Kukushkin and T. A. Suslina, Homogenization of high-order elliptic operators with periodic coefficients, Algebra i Analiz, 28 (2016), 89-149. doi: 10.1090/spmj/1439. Google Scholar

[15]

Y. M. Meshkova and T. A. Suslina, Homogenization of solutions of initial boundary value problems for parabolic systems, Funct. Anal. Appl., 49 (2015), 72-76. doi: 10.1007/s10688-015-0087-y. Google Scholar

[16]

Y. M. Meshkova and T. A. Suslina, Homogenization of initial boundary value problems for parabolic systems with periodic coefficients, Appl. Anal., 95 (2016), 1736-1775. doi: 10.1080/00036811.2015.1068300. Google Scholar

[17]

W. NiuZ. Shen and Y. Xu, Convergence rates and interior estimates in homogenization of higher order elliptic systems, J. Funct. Anal., 274 (2018), 2356-2398. doi: 10.1016/j.jfa.2018.01.012. Google Scholar

[18]

W. Niu and Y. Xu, Uniform Boundary Estimates in Homogenization of Higher Order Elliptic Systems, preprint, arXiv: 1709.04097.Google Scholar

[19]

S. E. Pastukhova, Estimates in homogenization of higher-order elliptic operators, Appl. Anal., 95 (2016), 1449-1466. doi: 10.1080/00036811.2016.1151495. Google Scholar

[20]

S. E. Pastukhova, Operator error estimates for homogenization of fourth order elliptic equations, St. Petersburg Math. J., 28 (2017), 273-289. doi: 10.1090/spmj/1450. Google Scholar

[21]

Z. Shen, Boundary estimates in elliptic homogenization, Anal. PDE, 10 (2017), 653-694. doi: 10.2140/apde.2017.10.653. Google Scholar

[22]

Z. Shen, Lectures on Periodic Homogenization of Elliptic Systems, preprint, arXiv: 1710.11257.Google Scholar

[23]

Z. Shen and J. Zhuge, Convergence rates in periodic homogenization of systems of elasticity, Proc. Amer. Math. Soc., 145 (2017), 1187-1202. doi: 10.1090/proc/13289. Google Scholar

[24]

T. A. Suslina, Homogenization of the parabolic Cauchy problem in the Sobolev class $H^1(\mathbb{R}^d)$, Funct. Anal. Appl., 44 (2010), 318-322. doi: 10.1007/s10688-010-0043-9. Google Scholar

[25]

T. A. Suslina, Homogenization of the Dirichlet problem for elliptic systems: $L^2$-operator error estimates, Mathematika, 59 (2013), 463-476. doi: 10.1112/S0025579312001131. Google Scholar

[26]

T. A. Suslina, Homogenization of the Neumann problem for elliptic systems with periodic coefficients, SIAM J. Math. Anal., 45 (2013), 3453-3493. doi: 10.1137/120901921. Google Scholar

[27]

T. A. Suslina, Homogenization of the dirichlet problem for higher-order elliptic equations with periodic coefficients, Algebra i Analiz, 29 (2017), 139-192. doi: 10.1090/spmj/1496. Google Scholar

[28]

T. A. Suslina, Homogenization of the neumann problem for higher order elliptic equations with periodic coefficients, Complex Variables and Elliptic Equations, 0 (2017), 1-31. doi: 10.1080/17476933.2017.1365845. Google Scholar

[29]

Q. Xu and S. Zhou, Quantitative estimates in homogenization of parabolic systems of elasticity in lipschitz cylinders, preprint, arXiv: 1705.01479.Google Scholar

[30]

Y. Xu and W. Niu, Convergence rates in almost-periodic homogenization of higher-order elliptic systems, preprint, arXiv: 1712.01744.Google Scholar

[31]

V. V. Zhikov and S. E. Pastukhova, Estimates of homogenization for a parabolic equation with periodic coefficients, Russ. J. Math. Phys., 13 (2006), 224-237. doi: 10.1134/S1061920806020087. Google Scholar

show all references

References:
[1]

S. N. Armstrong, A. Bordas and J. C. Mourrat, Quantitative stochastic homogenization and regularity theory of parabolic equations, preprint, arXiv: 1705.07672.Google Scholar

[2]

M. Avellaneda and F. Lin, Compactness methods in the theory of homogenization, Comm. Pure Appl. Math., 40 (1987), 803-847. doi: 10.1002/cpa.3160400607. Google Scholar

[3] A. BensoussanJ. L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, vol. 5, North-Holland Publishing Company Amsterdam, 1978. Google Scholar
[4]

S. Byun and Y. Jang, Calderón-Zygmund estimate for homogenization of parabolic systems, Discrete Contin. Dyn. Syst., 36 (2016), 6689-6714. doi: 10.3934/dcds.2016091. Google Scholar

[5]

H. Dong and H. Zhang, Conormal problem of higher-order parabolic systems with time irregular coefficients, Trans. Amer. Math. Soc., 368 (2016), 7413-7460. doi: 10.1090/tran/6605. Google Scholar

[6]

J. Geng and Z. Shen, Uniform regularity estimates in parabolic homogenization, Indiana Univ. Math. J., 64 (2015), 697-733. doi: 10.1512/iumj.2015.64.5503. Google Scholar

[7]

J. Geng and Z. Shen, Convergence rates in parabolic homogenization with time-dependent periodic coefficients, J. Funct. Anal., 272 (2017), 2092-2113. doi: 10.1016/j.jfa.2016.10.005. Google Scholar

[8]

G. Griso, Error estimate and unfolding for periodic homogenization, Asymptot. Anal., 40 (2004), 269-286. Google Scholar

[9]

S. Gu, Convergence rates in homogenization of Stokes systems, J. Differential Equations, 260 (2016), 5796-5815. doi: 10.1016/j.jde.2015.12.017. Google Scholar

[10] V. V. JikovS. M. Kozlov and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer Berlin Heidelberg, 1994. doi: 10.1007/978-3-642-84659-5. Google Scholar
[11]

C. E. KenigF. Lin and Z. Shen, Convergence rates in $L^2$ for elliptic homogenization problems, Arch. Ration. Mech. Anal., 203 (2012), 1009-1036. doi: 10.1007/s00205-011-0469-0. Google Scholar

[12]

C. E. KenigF. Lin and Z. Shen, Homogenization of elliptic systems with {N}eumann boundary conditions, J. Amer. Math. Soc., 26 (2013), 901-937. doi: 10.1090/S0894-0347-2013-00769-9. Google Scholar

[13]

C. E. KenigF. Lin and Z. Shen, Periodic homogenization of Green and Neumann functions, Comm. Pure Appl. Math., 67 (2014), 1219-1262. doi: 10.1002/cpa.21482. Google Scholar

[14]

A. A. Kukushkin and T. A. Suslina, Homogenization of high-order elliptic operators with periodic coefficients, Algebra i Analiz, 28 (2016), 89-149. doi: 10.1090/spmj/1439. Google Scholar

[15]

Y. M. Meshkova and T. A. Suslina, Homogenization of solutions of initial boundary value problems for parabolic systems, Funct. Anal. Appl., 49 (2015), 72-76. doi: 10.1007/s10688-015-0087-y. Google Scholar

[16]

Y. M. Meshkova and T. A. Suslina, Homogenization of initial boundary value problems for parabolic systems with periodic coefficients, Appl. Anal., 95 (2016), 1736-1775. doi: 10.1080/00036811.2015.1068300. Google Scholar

[17]

W. NiuZ. Shen and Y. Xu, Convergence rates and interior estimates in homogenization of higher order elliptic systems, J. Funct. Anal., 274 (2018), 2356-2398. doi: 10.1016/j.jfa.2018.01.012. Google Scholar

[18]

W. Niu and Y. Xu, Uniform Boundary Estimates in Homogenization of Higher Order Elliptic Systems, preprint, arXiv: 1709.04097.Google Scholar

[19]

S. E. Pastukhova, Estimates in homogenization of higher-order elliptic operators, Appl. Anal., 95 (2016), 1449-1466. doi: 10.1080/00036811.2016.1151495. Google Scholar

[20]

S. E. Pastukhova, Operator error estimates for homogenization of fourth order elliptic equations, St. Petersburg Math. J., 28 (2017), 273-289. doi: 10.1090/spmj/1450. Google Scholar

[21]

Z. Shen, Boundary estimates in elliptic homogenization, Anal. PDE, 10 (2017), 653-694. doi: 10.2140/apde.2017.10.653. Google Scholar

[22]

Z. Shen, Lectures on Periodic Homogenization of Elliptic Systems, preprint, arXiv: 1710.11257.Google Scholar

[23]

Z. Shen and J. Zhuge, Convergence rates in periodic homogenization of systems of elasticity, Proc. Amer. Math. Soc., 145 (2017), 1187-1202. doi: 10.1090/proc/13289. Google Scholar

[24]

T. A. Suslina, Homogenization of the parabolic Cauchy problem in the Sobolev class $H^1(\mathbb{R}^d)$, Funct. Anal. Appl., 44 (2010), 318-322. doi: 10.1007/s10688-010-0043-9. Google Scholar

[25]

T. A. Suslina, Homogenization of the Dirichlet problem for elliptic systems: $L^2$-operator error estimates, Mathematika, 59 (2013), 463-476. doi: 10.1112/S0025579312001131. Google Scholar

[26]

T. A. Suslina, Homogenization of the Neumann problem for elliptic systems with periodic coefficients, SIAM J. Math. Anal., 45 (2013), 3453-3493. doi: 10.1137/120901921. Google Scholar

[27]

T. A. Suslina, Homogenization of the dirichlet problem for higher-order elliptic equations with periodic coefficients, Algebra i Analiz, 29 (2017), 139-192. doi: 10.1090/spmj/1496. Google Scholar

[28]

T. A. Suslina, Homogenization of the neumann problem for higher order elliptic equations with periodic coefficients, Complex Variables and Elliptic Equations, 0 (2017), 1-31. doi: 10.1080/17476933.2017.1365845. Google Scholar

[29]

Q. Xu and S. Zhou, Quantitative estimates in homogenization of parabolic systems of elasticity in lipschitz cylinders, preprint, arXiv: 1705.01479.Google Scholar

[30]

Y. Xu and W. Niu, Convergence rates in almost-periodic homogenization of higher-order elliptic systems, preprint, arXiv: 1712.01744.Google Scholar

[31]

V. V. Zhikov and S. E. Pastukhova, Estimates of homogenization for a parabolic equation with periodic coefficients, Russ. J. Math. Phys., 13 (2006), 224-237. doi: 10.1134/S1061920806020087. Google Scholar

[1]

Andriy Bondarenko, Guy Bouchitté, Luísa Mascarenhas, Rajesh Mahadevan. Rate of convergence for correctors in almost periodic homogenization. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 503-514. doi: 10.3934/dcds.2005.13.503

[2]

Petronela Radu, Grozdena Todorova, Borislav Yordanov. Higher order energy decay rates for damped wave equations with variable coefficients. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 609-629. doi: 10.3934/dcdss.2009.2.609

[3]

Clesh Deseskel Elion Ekohela, Daniel Moukoko. On higher-order anisotropic perturbed Caginalp phase field systems. Electronic Research Announcements, 2019, 26: 36-53. doi: 10.3934/era.2019.26.004

[4]

Patrizia Donato, Florian Gaveau. Homogenization and correctors for the wave equation in non periodic perforated domains. Networks & Heterogeneous Media, 2008, 3 (1) : 97-124. doi: 10.3934/nhm.2008.3.97

[5]

Zhanying Yang. Homogenization and correctors for the hyperbolic problems with imperfect interfaces via the periodic unfolding method. Communications on Pure & Applied Analysis, 2014, 13 (1) : 249-272. doi: 10.3934/cpaa.2014.13.249

[6]

Denis R. Akhmetov, Renato Spigler. $L^1$-estimates for the higher-order derivatives of solutions to parabolic equations subject to initial values of bounded total variation. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1051-1074. doi: 10.3934/cpaa.2007.6.1051

[7]

Jie Zhao. Convergence rates for elliptic reiterated homogenization problems. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2787-2795. doi: 10.3934/cpaa.2013.12.2787

[8]

Eduardo Martínez. Higher-order variational calculus on Lie algebroids. Journal of Geometric Mechanics, 2015, 7 (1) : 81-108. doi: 10.3934/jgm.2015.7.81

[9]

Kazuyuki Yagasaki. Higher-order Melnikov method and chaos for two-degree-of-freedom Hamiltonian systems with saddle-centers. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 387-402. doi: 10.3934/dcds.2011.29.387

[10]

Robert Baier, Thuy T. T. Le. Construction of the minimum time function for linear systems via higher-order set-valued methods. Mathematical Control & Related Fields, 2019, 9 (2) : 223-255. doi: 10.3934/mcrf.2019012

[11]

Jean Louis Woukeng. $\sum $-convergence and reiterated homogenization of nonlinear parabolic operators. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1753-1789. doi: 10.3934/cpaa.2010.9.1753

[12]

Xinmin Yang, Xiaoqi Yang, Kok Lay Teo. Higher-order symmetric duality in multiobjective programming with invexity. Journal of Industrial & Management Optimization, 2008, 4 (2) : 385-391. doi: 10.3934/jimo.2008.4.385

[13]

Simão P. S. Santos, Natália Martins, Delfim F. M. Torres. Noether's theorem for higher-order variational problems of Herglotz type. Conference Publications, 2015, 2015 (special) : 990-999. doi: 10.3934/proc.2015.990

[14]

Pedro D. Prieto-Martínez, Narciso Román-Roy. Higher-order mechanics: Variational principles and other topics. Journal of Geometric Mechanics, 2013, 5 (4) : 493-510. doi: 10.3934/jgm.2013.5.493

[15]

Feliz Minhós, Hugo Carrasco. Solvability of higher-order BVPs in the half-line with unbounded nonlinearities. Conference Publications, 2015, 2015 (special) : 841-850. doi: 10.3934/proc.2015.0841

[16]

Robert Jankowski, Barbara Łupińska, Magdalena Nockowska-Rosiak, Ewa Schmeidel. Monotonic solutions of a higher-order neutral difference system. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 253-261. doi: 10.3934/dcdsb.2018017

[17]

Feng Wang, Fengquan Li, Zhijun Qiao. On the Cauchy problem for a higher-order μ-Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4163-4187. doi: 10.3934/dcds.2018181

[18]

Qilin Wang, S. J. Li. Higher-order sensitivity analysis in nonconvex vector optimization. Journal of Industrial & Management Optimization, 2010, 6 (2) : 381-392. doi: 10.3934/jimo.2010.6.381

[19]

David F. Parker. Higher-order shallow water equations and the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 629-641. doi: 10.3934/dcdsb.2007.7.629

[20]

Min Zhu. On the higher-order b-family equation and Euler equations on the circle. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 3013-3024. doi: 10.3934/dcds.2014.34.3013

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (77)
  • HTML views (100)
  • Cited by (0)

Other articles
by authors

[Back to Top]