# American Institute of Mathematical Sciences

• Previous Article
The regularity of solutions to some variational problems, including the p-Laplace equation for 3≤p < 4
• DCDS Home
• This Issue
• Next Article
Lower spectral radius and spectral mapping theorem for suprema preserving mappings
August  2018, 38(8): 4087-4115. doi: 10.3934/dcds.2018178

## Automatic sequences as good weights for ergodic theorems

 1 Institute of Mathematics, University of Leipzig, P.O. Box 100 920, 04009 Leipzig, Germany 2 Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel 3 Faculty of Mathematics and Computer Science, Jagiellonian University in Kraków, Łojasiewicza 6, 30-348 Kraków, Poland

Received  November 2017 Revised  March 2018 Published  May 2018

We study correlation estimates of automatic sequences (that is, sequences computable by finite automata) with polynomial phases. As a consequence, we provide a new class of good weights for classical and polynomial ergodic theorems. We show that automatic sequences are good weights in $L^2$ for polynomial averages and totally ergodic systems. For totally balanced automatic sequences (i.e., sequences converging to zero in mean along arithmetic progressions) the pointwise weighted ergodic theorem in $L^1$ holds. Moreover, invertible automatic sequences are good weights for the pointwise polynomial ergodic theorem in $L^r$, $r>1$.

Citation: Tanja Eisner, Jakub Konieczny. Automatic sequences as good weights for ergodic theorems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4087-4115. doi: 10.3934/dcds.2018178
##### References:
 [1] J.-P. Allouche and J. Shallit, The ring of k-regular sequences, Theoret. Comput. Sci., 98 (1992), 163–197. doi: 10.1016/0304-3975(92)90001-V. Google Scholar [2] J.-P. Allouche and J. Shallit, Automatic Sequences. Theory, Applications, Generalizations, Cambridge University Press, Cambridge, 2003. doi: 10.1017/CBO9780511546563. Google Scholar [3] I. Assani, A weighted pointwise ergodic theorem, Ann. Inst. H. Poincaré Probab. Statist., 34 (1998), 139–150. doi: 10.1016/S0246-0203(98)80021-6. Google Scholar [4] I. Assani, Wiener Wintner Ergodic Theorems, World Scientific Publishing Co., Inc., River Edge, NJ, 2003. doi: 10.1142/4538. Google Scholar [5] I. Assani and R. Moore, A good universal weight for multiple recurrence averages with commuting transformations in norm, Ergodic Theory Dynam. Systems, 37 (2017), 1009–1025, available at https://arXiv.org/abs/1506.06730. doi: 10.1017/etds.2015.76. Google Scholar [6] I. Assani and K. Presser, A survey of the return times theorem, in Ergodic Theory and Dynamical Systems, De Gruyter Proc. Math., De Gruyter, Berlin, 2014, 19–58. Google Scholar [7] J. P. Bell, M. Coons and K. G. Hare, The minimal growth of a k-regular sequence, Bull. Aust. Math. Soc., 90 (2014), 195–203. doi: 10.1017/S0004972714000197. Google Scholar [8] J. P. Bell, M. Coons and K. G. Hare, Growth degree classification for finitely generated semigroups of integer matrices, Semigroup Forum, 92 (2016), 23–44. doi: 10.1007/s00233-015-9725-1. Google Scholar [9] A. Bellow and V. Losert, The weighted pointwise ergodic theorem and the individual ergodic theorem along subsequences, Trans. Amer. Math. Soc., 288 (1985), 307–345, URL http://dx.doi.org/10.2307/2000442. doi: 10.1090/S0002-9947-1985-0773063-8. Google Scholar [10] D. Berend, M. Lin, J. Rosenblatt and A. Tempelman, Modulated and subsequential ergodic theorems in Hilbert and Banach spaces, Ergodic Theory Dynam. Systems, 22 (2002), 1653–1665. doi: 10.1017/S0143385702000846. Google Scholar [11] J. Bourgain, Pointwise ergodic theorems for arithmetic sets, Publ. Math., Inst. Hautes Études Sci., 69 (1985), 5–45, URL http://www.numdam.org/item?id=PMIHES_1989__69__5_0, With an appendix by the author, H. Furstenberg, Y. Katznelson and D. S. Ornstein. Google Scholar [12] J. Bourgain, H. Furstenberg, Y. Katznelson and D. S. Ornstein, Appendix on return-time sequences, Publ. Math., Inst. Hautes Études Sci., 69 (1985), 42–45, URL http://www.numdam.org/item?id=PMIHES_1989__69__42_0. Google Scholar [13] Z. Buczolich and R. D. Mauldin, Divergent square averages, Ann. of Math. (2), 171 (2010), 1479–1530. doi: 10.4007/annals.2010.171.1479. Google Scholar [14] Q. Chu, Convergence of weighted polynomial multiple ergodic averages, Proc. Amer. Math. Soc., 137 (2009), 1363–1369. doi: 10.1090/S0002-9939-08-09614-7. Google Scholar [15] D. Cömez, M. Lin and J. Olsen, Weighted ergodic theorems for mean ergodic L1- contractions, Trans. Amer. Math. Soc., 350 (1998), 101–117. doi: 10.1090/S0002-9947-98-01986-2. Google Scholar [16] C. Cuny and M. Weber, Ergodic theorems with arithmetical weights, Israel J. Math., 217 (2017), 139-180. doi: 10.1007/s11856-017-1441-y. Google Scholar [17] S. Drappeau and C. Müllner, Exponential sums with automatic sequences, 2017, Preprint, available at https://arXiv.org/abs/1710.01091.Google Scholar [18] M. Drmota and J. F. Morgenbesser, Generalized Thue-Morse sequences of squares, Israel J. Math., 190 (2012), 157–193. doi: 10.1007/s11856-011-0186-2. Google Scholar [19] P. Dumas, Joint spectral radius, dilation equations, and asymptotic behavior of radix-rational sequences, Linear Algebra Appl., 438 (2013), 2107–2126. doi: 10.1016/j.laa.2012.10.013. Google Scholar [20] P. Dumas, Asymptotic expansions for linear homogeneous divide-and-conquer recurrences: algebraic and analytic approaches collated, Theoret. Comput. Sci., 548 (2014), 25–53. doi: 10.1016/j.tcs.2014.06.036. Google Scholar [21] M. Einsiedler and T. Ward, Ergodic Theory with a View Towards Number Theory, vol. 259 of Graduate Texts in Mathematics, Springer-Verlag London, Ltd., London, 2011. doi: 10.1007/978-0-85729-021-2. Google Scholar [22] T. Eisner, A polynomial version of Sarnak's conjecture, C. R. Math. Acad. Sci. Paris, 353 (2015), 569–572. doi: 10.1016/j.crma.2015.04.009. Google Scholar [23] T. Eisner, Linear sequences and weighted ergodic theorems, Abstr. Appl. Anal., (2013), Art. ID 815726, 5 pp. Google Scholar [24] T. Eisner, B. Farkas, M. Haase and R. Nagel, Operator Theoretic Aspects of Ergodic Theory, vol. 272 of Graduate Texts in Mathematics, Springer, Cham, 2015. doi: 10.1007/978-3-319-16898-2. Google Scholar [25] T. Eisner and B. Krause, (Uniform) convergence of twisted ergodic averages, Ergodic Theory Dynam. Systems, 36 (2016), 2172–2202. doi: 10.1017/etds.2015.6. Google Scholar [26] T. Eisner and P. Zorin-Kranich, Uniformity in the Wiener-Wintner theorem for nilsequences, Discrete Contin. Dyn. Syst., 33 (2013), 3497–3516. doi: 10.3934/dcds.2013.33.3497. Google Scholar [27] E. H. El Abdalaoui, J. Ku laga-Przymus, M. Lemańczyk and T. de la Rue, The Chowla and the Sarnak conjectures from ergodic theory point of view, Discrete Contin. Dyn. Syst., 37 (2017), 2899–2944. doi: 10.3934/dcds.2017125. Google Scholar [28] A.-H. Fan, Weighted Birkhoff ergodic theorem with oscillating weights, Ergodic Theory and Dynamical Systems, (2017), 1-15. doi: 10.1017/etds.2017.81. Google Scholar [29] N. Frantzikinakis, Uniformity in the polynomial Wiener-Wintner theorem, Ergodic Theory Dynam. Systems, 26 (2006), 1061–1071. doi: 10.1017/S0143385706000204. Google Scholar [30] A. O. Gel'fond, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith., 13 (1967/1968), 259-265. doi: 10.4064/aa-13-3-259-265. Google Scholar [31] B. Green and T. Tao, The quantitative behaviour of polynomial orbits on nilmanifolds, Ann. of Math. (2), 175 (2012), 465–540. doi: 10.4007/annals.2012.175.2.2. Google Scholar [32] B. Host and B. Kra, Uniformity seminorms on $\ell^∞$ and applications, J. Anal. Math., 108 (2009), 219–276. doi: 10.1007/s11854-009-0024-1. Google Scholar [33] J. Konieczny, Gowers norms for the Thue-Morse and Rudin-Shapiro sequences, 2017, Preprint, available at https://arXiv.org/abs/1611.09985.Google Scholar [34] B. Krause and P. Zorin-Kranich, A random pointwise ergodic theorem with Hardy field weights, Illinois J. Math., 59 (2015), 663–674, URL http://projecteuclid.org/euclid.ijm/1475266402. Google Scholar [35] P. LaVictoire, Universally L1-bad arithmetic sequences, J. Anal. Math., 113 (2011), 241–263. doi: 10.1007/s11854-011-0006-y. Google Scholar [36] E. Lesigne, Un théorème de disjonction de systèmes dynamiques et une généralisation du théorème ergodique de Wiener-Wintner, Ergodic Theory Dynam. Systems, 10 (1990), 513– 521. doi: 10.1017/S014338570000571X. Google Scholar [37] E. Lesigne, Spectre quasi-discret et théorème ergodique de Wiener-Wintner pour les polynômes, Ergodic Theory Dynam. Systems, 13 (1993), 767-784. Google Scholar [38] E. Lesigne and C. Mauduit, Propriétés ergodiques des suites q-multiplicatives, Compositio Math., 100 (1996), 131–169, URL http://www.numdam.org/item?id=CM_1996__100_2_131_0. Google Scholar [39] E. Lesigne, C. Mauduit and B. Mossé, Le théorème ergodique le long d'une suite q-multiplicative, Compositio Math., 93 (1994), 49–79, URL http://www.numdam.org/item?id=CM_1994__93_1_49_0. Google Scholar [40] M. Lin, J. Olsen and A. Tempelman, On modulated ergodic theorems for Dunford-Schwartz operators, in Proceedings of the Conference on Probability, Ergodic Theory, and Analysis (Evanston, IL, 1997), 43 (1999), 542–567, URL http://projecteuclid.org/euclid.ijm/1255985110. Google Scholar [41] B. Martin, C. Mauduit and J. Rivat, Théorème des nombres premiers pour les fonctions digitales, Acta Arith., 165 (2014), 11–45. doi: 10.4064/aa165-1-2. Google Scholar [42] C. Mauduit, Automates finis et ensembles normaux, Ann. Inst. Fourier (Grenoble), 36 (1986), 1–25, URL http://www.numdam.org/item?id=AIF_1986__36_2_1_0. doi: 10.5802/aif.1044. Google Scholar [43] C. Mauduit, Propriétés arithmétiques des substitutions et automates infinis, Ann. Inst. Fourier (Grenoble), 56 (2006), 2525–2549, URL http://aif.cedram.org/item?id=AIF_200__56_7_2525_0, Numération, pavages, substitutions. doi: 10.5802/aif.2248. Google Scholar [44] C. Mauduit and A. Sárközy, On finite pseudorandom binary sequences. Ⅱ. The Champernowne, Rudin-Shapiro, and Thue-Morse sequences, a further construction, J. Number Theory, 73 (1998), 256–276. doi: 10.1006/jnth.1998.2286. Google Scholar [45] C. Müllner, Automatic sequences fulfill the Sarnak conjecture, Duke Math. J., 166 (2017), 3219–3290. doi: 10.1215/00127094-2017-0024. Google Scholar [46] C. Müllner, Exponential Sum Estimates and Fourier Analytic Methods for Digitally Based Dynamical Systems, PhD thesis, Technische Universit at Wien, 2017.Google Scholar [47] K. Petersen, Ergodic Theory, vol. 2 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1989, Corrected reprint of the 1983 original. Google Scholar [48] M. Queffélec, Substitution Dynamical Systems—Spectral Analysis, vol. 1294 of Lecture Notes in Mathematics, 2nd edition, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-11212-6. Google Scholar [49] T. Tao, Poincaré's Legacies, Pages from Year two of a Mathematical blog. Part I, American Mathematical Society, Providence, RI, 2009. Google Scholar [50] P. Walters, An Introduction to Ergodic Theory, vol. 79 of Graduate Texts in Mathematics, Springer-Verlag, New York-Berlin, 1982. Google Scholar [51] N. Wiener and A. Wintner, Harmonic analysis and ergodic theory, Amer. J. Math., 63 (1941), 415–426. doi: 10.2307/2371534. Google Scholar [52] M. Wierdl, Pointwise ergodic theorems along the prime numbers, Israel J. Math., 64 (1988), 315-336. doi: 10.1007/BF02882425. Google Scholar [53] P. Zorin-Kranich, A double return times theorem, Israel J. Math., 204 (2014), 85–96, available at https://arXiv.org/abs/1506.05748. doi: 10.1007/s11856-014-1112-1. Google Scholar

show all references

##### References:
 [1] J.-P. Allouche and J. Shallit, The ring of k-regular sequences, Theoret. Comput. Sci., 98 (1992), 163–197. doi: 10.1016/0304-3975(92)90001-V. Google Scholar [2] J.-P. Allouche and J. Shallit, Automatic Sequences. Theory, Applications, Generalizations, Cambridge University Press, Cambridge, 2003. doi: 10.1017/CBO9780511546563. Google Scholar [3] I. Assani, A weighted pointwise ergodic theorem, Ann. Inst. H. Poincaré Probab. Statist., 34 (1998), 139–150. doi: 10.1016/S0246-0203(98)80021-6. Google Scholar [4] I. Assani, Wiener Wintner Ergodic Theorems, World Scientific Publishing Co., Inc., River Edge, NJ, 2003. doi: 10.1142/4538. Google Scholar [5] I. Assani and R. Moore, A good universal weight for multiple recurrence averages with commuting transformations in norm, Ergodic Theory Dynam. Systems, 37 (2017), 1009–1025, available at https://arXiv.org/abs/1506.06730. doi: 10.1017/etds.2015.76. Google Scholar [6] I. Assani and K. Presser, A survey of the return times theorem, in Ergodic Theory and Dynamical Systems, De Gruyter Proc. Math., De Gruyter, Berlin, 2014, 19–58. Google Scholar [7] J. P. Bell, M. Coons and K. G. Hare, The minimal growth of a k-regular sequence, Bull. Aust. Math. Soc., 90 (2014), 195–203. doi: 10.1017/S0004972714000197. Google Scholar [8] J. P. Bell, M. Coons and K. G. Hare, Growth degree classification for finitely generated semigroups of integer matrices, Semigroup Forum, 92 (2016), 23–44. doi: 10.1007/s00233-015-9725-1. Google Scholar [9] A. Bellow and V. Losert, The weighted pointwise ergodic theorem and the individual ergodic theorem along subsequences, Trans. Amer. Math. Soc., 288 (1985), 307–345, URL http://dx.doi.org/10.2307/2000442. doi: 10.1090/S0002-9947-1985-0773063-8. Google Scholar [10] D. Berend, M. Lin, J. Rosenblatt and A. Tempelman, Modulated and subsequential ergodic theorems in Hilbert and Banach spaces, Ergodic Theory Dynam. Systems, 22 (2002), 1653–1665. doi: 10.1017/S0143385702000846. Google Scholar [11] J. Bourgain, Pointwise ergodic theorems for arithmetic sets, Publ. Math., Inst. Hautes Études Sci., 69 (1985), 5–45, URL http://www.numdam.org/item?id=PMIHES_1989__69__5_0, With an appendix by the author, H. Furstenberg, Y. Katznelson and D. S. Ornstein. Google Scholar [12] J. Bourgain, H. Furstenberg, Y. Katznelson and D. S. Ornstein, Appendix on return-time sequences, Publ. Math., Inst. Hautes Études Sci., 69 (1985), 42–45, URL http://www.numdam.org/item?id=PMIHES_1989__69__42_0. Google Scholar [13] Z. Buczolich and R. D. Mauldin, Divergent square averages, Ann. of Math. (2), 171 (2010), 1479–1530. doi: 10.4007/annals.2010.171.1479. Google Scholar [14] Q. Chu, Convergence of weighted polynomial multiple ergodic averages, Proc. Amer. Math. Soc., 137 (2009), 1363–1369. doi: 10.1090/S0002-9939-08-09614-7. Google Scholar [15] D. Cömez, M. Lin and J. Olsen, Weighted ergodic theorems for mean ergodic L1- contractions, Trans. Amer. Math. Soc., 350 (1998), 101–117. doi: 10.1090/S0002-9947-98-01986-2. Google Scholar [16] C. Cuny and M. Weber, Ergodic theorems with arithmetical weights, Israel J. Math., 217 (2017), 139-180. doi: 10.1007/s11856-017-1441-y. Google Scholar [17] S. Drappeau and C. Müllner, Exponential sums with automatic sequences, 2017, Preprint, available at https://arXiv.org/abs/1710.01091.Google Scholar [18] M. Drmota and J. F. Morgenbesser, Generalized Thue-Morse sequences of squares, Israel J. Math., 190 (2012), 157–193. doi: 10.1007/s11856-011-0186-2. Google Scholar [19] P. Dumas, Joint spectral radius, dilation equations, and asymptotic behavior of radix-rational sequences, Linear Algebra Appl., 438 (2013), 2107–2126. doi: 10.1016/j.laa.2012.10.013. Google Scholar [20] P. Dumas, Asymptotic expansions for linear homogeneous divide-and-conquer recurrences: algebraic and analytic approaches collated, Theoret. Comput. Sci., 548 (2014), 25–53. doi: 10.1016/j.tcs.2014.06.036. Google Scholar [21] M. Einsiedler and T. Ward, Ergodic Theory with a View Towards Number Theory, vol. 259 of Graduate Texts in Mathematics, Springer-Verlag London, Ltd., London, 2011. doi: 10.1007/978-0-85729-021-2. Google Scholar [22] T. Eisner, A polynomial version of Sarnak's conjecture, C. R. Math. Acad. Sci. Paris, 353 (2015), 569–572. doi: 10.1016/j.crma.2015.04.009. Google Scholar [23] T. Eisner, Linear sequences and weighted ergodic theorems, Abstr. Appl. Anal., (2013), Art. ID 815726, 5 pp. Google Scholar [24] T. Eisner, B. Farkas, M. Haase and R. Nagel, Operator Theoretic Aspects of Ergodic Theory, vol. 272 of Graduate Texts in Mathematics, Springer, Cham, 2015. doi: 10.1007/978-3-319-16898-2. Google Scholar [25] T. Eisner and B. Krause, (Uniform) convergence of twisted ergodic averages, Ergodic Theory Dynam. Systems, 36 (2016), 2172–2202. doi: 10.1017/etds.2015.6. Google Scholar [26] T. Eisner and P. Zorin-Kranich, Uniformity in the Wiener-Wintner theorem for nilsequences, Discrete Contin. Dyn. Syst., 33 (2013), 3497–3516. doi: 10.3934/dcds.2013.33.3497. Google Scholar [27] E. H. El Abdalaoui, J. Ku laga-Przymus, M. Lemańczyk and T. de la Rue, The Chowla and the Sarnak conjectures from ergodic theory point of view, Discrete Contin. Dyn. Syst., 37 (2017), 2899–2944. doi: 10.3934/dcds.2017125. Google Scholar [28] A.-H. Fan, Weighted Birkhoff ergodic theorem with oscillating weights, Ergodic Theory and Dynamical Systems, (2017), 1-15. doi: 10.1017/etds.2017.81. Google Scholar [29] N. Frantzikinakis, Uniformity in the polynomial Wiener-Wintner theorem, Ergodic Theory Dynam. Systems, 26 (2006), 1061–1071. doi: 10.1017/S0143385706000204. Google Scholar [30] A. O. Gel'fond, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith., 13 (1967/1968), 259-265. doi: 10.4064/aa-13-3-259-265. Google Scholar [31] B. Green and T. Tao, The quantitative behaviour of polynomial orbits on nilmanifolds, Ann. of Math. (2), 175 (2012), 465–540. doi: 10.4007/annals.2012.175.2.2. Google Scholar [32] B. Host and B. Kra, Uniformity seminorms on $\ell^∞$ and applications, J. Anal. Math., 108 (2009), 219–276. doi: 10.1007/s11854-009-0024-1. Google Scholar [33] J. Konieczny, Gowers norms for the Thue-Morse and Rudin-Shapiro sequences, 2017, Preprint, available at https://arXiv.org/abs/1611.09985.Google Scholar [34] B. Krause and P. Zorin-Kranich, A random pointwise ergodic theorem with Hardy field weights, Illinois J. Math., 59 (2015), 663–674, URL http://projecteuclid.org/euclid.ijm/1475266402. Google Scholar [35] P. LaVictoire, Universally L1-bad arithmetic sequences, J. Anal. Math., 113 (2011), 241–263. doi: 10.1007/s11854-011-0006-y. Google Scholar [36] E. Lesigne, Un théorème de disjonction de systèmes dynamiques et une généralisation du théorème ergodique de Wiener-Wintner, Ergodic Theory Dynam. Systems, 10 (1990), 513– 521. doi: 10.1017/S014338570000571X. Google Scholar [37] E. Lesigne, Spectre quasi-discret et théorème ergodique de Wiener-Wintner pour les polynômes, Ergodic Theory Dynam. Systems, 13 (1993), 767-784. Google Scholar [38] E. Lesigne and C. Mauduit, Propriétés ergodiques des suites q-multiplicatives, Compositio Math., 100 (1996), 131–169, URL http://www.numdam.org/item?id=CM_1996__100_2_131_0. Google Scholar [39] E. Lesigne, C. Mauduit and B. Mossé, Le théorème ergodique le long d'une suite q-multiplicative, Compositio Math., 93 (1994), 49–79, URL http://www.numdam.org/item?id=CM_1994__93_1_49_0. Google Scholar [40] M. Lin, J. Olsen and A. Tempelman, On modulated ergodic theorems for Dunford-Schwartz operators, in Proceedings of the Conference on Probability, Ergodic Theory, and Analysis (Evanston, IL, 1997), 43 (1999), 542–567, URL http://projecteuclid.org/euclid.ijm/1255985110. Google Scholar [41] B. Martin, C. Mauduit and J. Rivat, Théorème des nombres premiers pour les fonctions digitales, Acta Arith., 165 (2014), 11–45. doi: 10.4064/aa165-1-2. Google Scholar [42] C. Mauduit, Automates finis et ensembles normaux, Ann. Inst. Fourier (Grenoble), 36 (1986), 1–25, URL http://www.numdam.org/item?id=AIF_1986__36_2_1_0. doi: 10.5802/aif.1044. Google Scholar [43] C. Mauduit, Propriétés arithmétiques des substitutions et automates infinis, Ann. Inst. Fourier (Grenoble), 56 (2006), 2525–2549, URL http://aif.cedram.org/item?id=AIF_200__56_7_2525_0, Numération, pavages, substitutions. doi: 10.5802/aif.2248. Google Scholar [44] C. Mauduit and A. Sárközy, On finite pseudorandom binary sequences. Ⅱ. The Champernowne, Rudin-Shapiro, and Thue-Morse sequences, a further construction, J. Number Theory, 73 (1998), 256–276. doi: 10.1006/jnth.1998.2286. Google Scholar [45] C. Müllner, Automatic sequences fulfill the Sarnak conjecture, Duke Math. J., 166 (2017), 3219–3290. doi: 10.1215/00127094-2017-0024. Google Scholar [46] C. Müllner, Exponential Sum Estimates and Fourier Analytic Methods for Digitally Based Dynamical Systems, PhD thesis, Technische Universit at Wien, 2017.Google Scholar [47] K. Petersen, Ergodic Theory, vol. 2 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1989, Corrected reprint of the 1983 original. Google Scholar [48] M. Queffélec, Substitution Dynamical Systems—Spectral Analysis, vol. 1294 of Lecture Notes in Mathematics, 2nd edition, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-11212-6. Google Scholar [49] T. Tao, Poincaré's Legacies, Pages from Year two of a Mathematical blog. Part I, American Mathematical Society, Providence, RI, 2009. Google Scholar [50] P. Walters, An Introduction to Ergodic Theory, vol. 79 of Graduate Texts in Mathematics, Springer-Verlag, New York-Berlin, 1982. Google Scholar [51] N. Wiener and A. Wintner, Harmonic analysis and ergodic theory, Amer. J. Math., 63 (1941), 415–426. doi: 10.2307/2371534. Google Scholar [52] M. Wierdl, Pointwise ergodic theorems along the prime numbers, Israel J. Math., 64 (1988), 315-336. doi: 10.1007/BF02882425. Google Scholar [53] P. Zorin-Kranich, A double return times theorem, Israel J. Math., 204 (2014), 85–96, available at https://arXiv.org/abs/1506.05748. doi: 10.1007/s11856-014-1112-1. Google Scholar
 [1] Tanja Eisner, Pavel Zorin-Kranich. Uniformity in the Wiener-Wintner theorem for nilsequences. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3497-3516. doi: 10.3934/dcds.2013.33.3497 [2] Cecilia González-Tokman, Anthony Quas. A concise proof of the multiplicative ergodic theorem on Banach spaces. Journal of Modern Dynamics, 2015, 9: 237-255. doi: 10.3934/jmd.2015.9.237 [3] Seung Jun Chang, Jae Gil Choi. A Cameron-Storvick theorem for the analytic Feynman integral associated with Gaussian paths on a Wiener space and applications. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2225-2238. doi: 10.3934/cpaa.2018106 [4] Yuri Kifer. Ergodic theorems for nonconventional arrays and an extension of the Szemerédi theorem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2687-2716. doi: 10.3934/dcds.2018113 [5] Alex Blumenthal. A volume-based approach to the multiplicative ergodic theorem on Banach spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2377-2403. doi: 10.3934/dcds.2016.36.2377 [6] Luciana A. Alves, Luiz A. B. San Martin. Multiplicative ergodic theorem on flag bundles of semi-simple Lie groups. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1247-1273. doi: 10.3934/dcds.2013.33.1247 [7] Yves Derriennic. Some aspects of recent works on limit theorems in ergodic theory with special emphasis on the "central limit theorem''. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 143-158. doi: 10.3934/dcds.2006.15.143 [8] J. Delon, A. Desolneux, Jose-Luis Lisani, A. B. Petro. Automatic color palette. Inverse Problems & Imaging, 2007, 1 (2) : 265-287. doi: 10.3934/ipi.2007.1.265 [9] Oliver Jenkinson. Ergodic Optimization. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 197-224. doi: 10.3934/dcds.2006.15.197 [10] Ferenc A. Bartha, Hans Z. Munthe-Kaas. Computing of B-series by automatic differentiation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 903-914. doi: 10.3934/dcds.2014.34.903 [11] L. Igual, J. Preciozzi, L. Garrido, A. Almansa, V. Caselles, B. Rougé. Automatic low baseline stereo in urban areas. Inverse Problems & Imaging, 2007, 1 (2) : 319-348. doi: 10.3934/ipi.2007.1.319 [12] Bun Theang Ong, Masao Fukushima. Global optimization via differential evolution with automatic termination. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 57-67. doi: 10.3934/naco.2012.2.57 [13] Richard Hofer, Arne Winterhof. On the arithmetic autocorrelation of the Legendre sequence. Advances in Mathematics of Communications, 2017, 11 (1) : 237-244. doi: 10.3934/amc.2017015 [14] Rong Liu, Saini Jonathan Tishari. Automatic tracking and positioning algorithm for moving targets in complex environment. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1251-1264. doi: 10.3934/dcdss.2019086 [15] Ryszard Rudnicki. An ergodic theory approach to chaos. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 757-770. doi: 10.3934/dcds.2015.35.757 [16] Roy Adler, Bruce Kitchens, Michael Shub. Stably ergodic skew products. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 349-350. doi: 10.3934/dcds.1996.2.349 [17] Alexandre I. Danilenko, Mariusz Lemańczyk. Spectral multiplicities for ergodic flows. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4271-4289. doi: 10.3934/dcds.2013.33.4271 [18] Doǧan Çömez. The modulated ergodic Hilbert transform. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 325-336. doi: 10.3934/dcdss.2009.2.325 [19] Thierry de la Rue. An introduction to joinings in ergodic theory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 121-142. doi: 10.3934/dcds.2006.15.121 [20] John Kieffer and En-hui Yang. Ergodic behavior of graph entropy. Electronic Research Announcements, 1997, 3: 11-16.

2018 Impact Factor: 1.143

## Metrics

• PDF downloads (57)
• HTML views (125)
• Cited by (0)

## Other articlesby authors

• on AIMS
• on Google Scholar

[Back to Top]