• Previous Article
    Quantization conditions of eigenvalues for semiclassical Zakharov-Shabat systems on the circle
  • DCDS Home
  • This Issue
  • Next Article
    Oscillating solutions for prescribed mean curvature equations: euclidean and lorentz-minkowski cases
August  2018, 38(8): 3875-3898. doi: 10.3934/dcds.2018168

Global weak solution and boundedness in a three-dimensional competing chemotaxis

1. 

Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China

2. 

College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China

3. 

College of Economic Mathematics, Southwestern University of Finance and Economics, Chengdu 611130, China

Received  September 2017 Revised  February 2018 Published  May 2018

Fund Project: The second author is partially supported by NSFC (Grant No. 11771062 and 11571062), the Fundamental Research Funds for the Central Universities (Grant No. 10611CDJXZ238826) and the Basic and Advanced Research Project of CQC-STC (Grant No. cstc2015jcyjBX0007), and the third author is partially supported by the Fundamental Research Funds for the Central Universities (Grant No. JBK1801059) and Chongqing Scientific & Technological Talents Program (Grant No. KJXX2017006)

We consider an initial-boundary value problem for a parabolic-parabolic-elliptic attraction-repulsion chemotaxis model
$ \left\{ \begin{array}{l}u_t = Δ u-χ\nabla·(u\nabla v)+ξ\nabla·(u\nabla w),&x∈ Ω,&t>0,\\v_t = Δ v-β v+α u,&x∈Ω,&t>0,\\0 = Δ w-δ w+γ u,&x∈Ω,&t>0\\\end{array} \right. $
in a bounded domain
$Ω\subset \mathbb{R}^3$
with positive parameters
$χ, ξ, α, β, γ$
and
$δ$
.
It is firstly proved that if the repulsion dominates in the sense that
$ξγ>χα$
, then for any choice of sufficiently smooth initial data
$(u_0, v_0)$
the corresponding initial-boundary value problem is shown to possess a globally defined weak solution. To the best of our knowledge, this situation provides the first result on global existence of the above system in the three-dimensional setting when
$ξγ>χα$
, and extends the results in Lin et al. (2016) [19] and Jin and Xiang (2017) [14] to more general case.
Secondly, if the initial data is appropriately small or the repulsion is enough strong in the sense that
$ξγ$
is suitable large as related to
$χα$
, then the classical solutions to the above system are uniformly-in-time bounded.
Citation: Hua Zhong, Chunlai Mu, Ke Lin. Global weak solution and boundedness in a three-dimensional competing chemotaxis. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3875-3898. doi: 10.3934/dcds.2018168
References:
[1]

S. AgmonA. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Ⅰ, Commun. Pure Appl. Math., 12 (1959), 623-727. doi: 10.1002/cpa.3160120405. Google Scholar

[2]

S. AgmonA. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Ⅱ, Commun. Pure Appl. Math., 17 (1964), 35-92. doi: 10.1002/cpa.3160170104. Google Scholar

[3]

N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763. doi: 10.1142/S021820251550044X. Google Scholar

[4]

T. CieślakPh. Laurençot and C. Morales-Rodrigo, Global existence and convergence to steady-states in a chemorepulsion system, In Parabolic and Navier-Stokes equations, Banach Center Publ. Polish Acad. Sci. Inst. Math., 81 (2008), 105-117. doi: 10.4064/bc81-0-7. Google Scholar

[5]

N. Dunford and J. T. Schwartz, Linear Operators. Ⅰ. General Theory, With the assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics, Vol. 7. Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958. Google Scholar

[6]

E. Espejo and T. Suzuki, Global existence and blow-up for a system describing the aggregation of microglia, Appl. Math. Lett., 35 (2014), 29-34. doi: 10.1016/j.aml.2014.04.007. Google Scholar

[7]

K. Fujie and T. Senba, Application of an Adams type inequality to a two-chemical substances chemotaxis system, J. Differential Equations, 263 (2017), 88-148. doi: 10.1016/j.jde.2017.02.031. Google Scholar

[8]

H. Gajewski and K. Zacharias, Global behavior of a reaction-diffusion system modelling chemotaxis, Math. Nachr., 195 (1998), 77-114. doi: 10.1002/mana.19981950106. Google Scholar

[9]

D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177. doi: 10.1017/S0956792501004363. Google Scholar

[10]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107. doi: 10.1016/j.jde.2004.10.022. Google Scholar

[11]

H. Y. Jin, Boundedness of the attraction-repulsion Keller-Segel system, J. Math. Anal. Appl., 422 (2015), 1463-1478. doi: 10.1016/j.jmaa.2014.09.049. Google Scholar

[12]

H. Y. Jin and Z. A. Wang, Asymptotic dynamics of the one-dimensional attraction-repulsion Keller-Segel model, Math. Methods Appl. Sci., 38 (2015), 444-457. doi: 10.1002/mma.3080. Google Scholar

[13]

H. Y. Jin and Z. A. Wang, Boundedness, blowup and critical mass phenomenon in competing chemotaxis, J. Differential Equations, 260 (2016), 162-196. doi: 10.1016/j.jde.2015.08.040. Google Scholar

[14]

H. Y. Jin and T. Xiang, Repulsion effects on boundedness in a quasilinear attraction-repulsion chemotaxis model in higher dimensions, Discrete Contin. Dyn. Syst. B, 22 (2017), 1-15. Google Scholar

[15]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5. Google Scholar

[16]

Y. Li and Y. X. Li, Blow-up of nonradial solutions to attraction-repulsion chemotaxis system in two dimensions, Nonlinear Anal. Real World Appl., 30 (2016), 170-183. doi: 10.1016/j.nonrwa.2015.12.003. Google Scholar

[17]

Y. H. LiK. Lin and C. L. Mu, Asymptotic behavior for small mass in an attraction-repulsion chemotaxis system, Electron. J. Differential Equations, 146 (2015), 1-13. Google Scholar

[18]

K. Lin and C. L. Mu, Global existence and convergence to steady states for an attraction-repulsion chemotaxis system, Nonlinear Anal. Real World Appl., 31 (2016), 630-642. doi: 10.1016/j.nonrwa.2016.03.012. Google Scholar

[19]

K. LinC. L. Mu and Y. Gao, Boundedness and blow up in the higher-dimensional attraction-repulsion chemotaxis system with nonlinear diffusion, J. Differential Equations, 261 (2016), 4524-4572. doi: 10.1016/j.jde.2016.07.002. Google Scholar

[20]

K. LinC. L. Mu and L. C. Wang, Large time behavior of an attraction-repulsion chemotaxis system, J. Math. Anal. Appl., 426 (2015), 105-124. doi: 10.1016/j.jmaa.2014.12.052. Google Scholar

[21]

K. Lin, C. L. Mu and D. Q. Zhou, Stabilization in a higher-dimensional attraction-repulsion chemotaxis system if repulsion dominates over attraction, preprint, (2018).Google Scholar

[22]

J. Liu and Z. A. Wang, Classical solutions and steady states of an attraction-repulsion chemotaxis in one dimension, J. Biol. Dyn., 6 (2012), 31-41. doi: 10.1080/17513758.2011.571722. Google Scholar

[23]

P. LiuJ. P. Shi and Z. A. Wang, Pattern formation of the attraction-repulsion keller-segel system, Discrete Contin. Dyn. Syst. B, 18 (2013), 2597-2625. doi: 10.3934/dcdsb.2013.18.2597. Google Scholar

[24]

M. LucaA. Chavez-RossL. Edelstein-Keshet and A. Mogilner, Chemotactic signalling, microglia, and Alzheimer's disease senile plague: is there a connection?, Bull. Math. Biol., 65 (2003), 673-730. Google Scholar

[25]

N. Mizoguchi and M. Winkler, Blow-up in the two-dimensional parabolic Keller-Segel system, preprint, 2016.Google Scholar

[26]

M. S. Mock, An initial value problem from semiconductor device theory, SIAM J. Math. Anal., 5 (1974), 597-612. doi: 10.1137/0505061. Google Scholar

[27]

M. S. Mock, Asymptotic behavior of solutions of transport equations for semiconductor devices, J. Math. Anal. Appl., 49 (1975), 215-225. doi: 10.1016/0022-247X(75)90172-9. Google Scholar

[28]

T. Nagai, Blow-up of nonradial solutions to parabolic-elliptic systems modelling chemotaxis in two-dimensional domains, J. Inequal. Appl., 6 (2001), 37-55. doi: 10.1155/S1025583401000042. Google Scholar

[29]

T. NagaiT. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433. Google Scholar

[30]

K. Osaki and A. Yagi, Finite dimensional attractors for one-dimensional Keller-Segel equations, Funkc. Ekvacioj. Ser. Int., 44 (2001), 441-469. Google Scholar

[31]

K. J. Painter and T. Hillen, Volume-filling quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10 (2002), 501-543. Google Scholar

[32]

C. StinnerC. Surulescu and M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969-2007. doi: 10.1137/13094058X. Google Scholar

[33]

Y. Tao and Z. A. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1-36. doi: 10.1142/S0218202512500443. Google Scholar

[34]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715. doi: 10.1016/j.jde.2011.08.019. Google Scholar

[35]

Y. Tao and M. Winkler, Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, J. Differential Equations, 257 (2014), 784-815. doi: 10.1016/j.jde.2014.04.014. Google Scholar

[36]

Y. Tao and M. Winkler, Effects of signal-dependent motilities in a Keller-Segel-type reaction-diffusion system, Math. Models Methods Appl. Sci., 27 (2017), 1645-1683. doi: 10.1142/S0218202517500282. Google Scholar

[37]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Partial Differential Equations, 32 (2007), 849-877. doi: 10.1080/03605300701319003. Google Scholar

[38]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905. doi: 10.1016/j.jde.2010.02.008. Google Scholar

[39]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537. doi: 10.1080/03605300903473426. Google Scholar

[40]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767. doi: 10.1016/j.matpur.2013.01.020. Google Scholar

[41]

H. YuQ. Guo and S. N. Zheng, Finite time blow-up of nonradial solutions in an attraction-repulsion chemotaxis system, Nonlinear Anal. Real World Appl., 34 (2017), 335-342. doi: 10.1016/j.nonrwa.2016.09.007. Google Scholar

[42]

Q. S. Zhang and Y. X. Li, An attraction-repulsion chemotaxis system with logistic source, ZAMM Z. Angew. Math. Mech., 96 (2016), 570-584. doi: 10.1002/zamm.201400311. Google Scholar

show all references

References:
[1]

S. AgmonA. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Ⅰ, Commun. Pure Appl. Math., 12 (1959), 623-727. doi: 10.1002/cpa.3160120405. Google Scholar

[2]

S. AgmonA. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Ⅱ, Commun. Pure Appl. Math., 17 (1964), 35-92. doi: 10.1002/cpa.3160170104. Google Scholar

[3]

N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763. doi: 10.1142/S021820251550044X. Google Scholar

[4]

T. CieślakPh. Laurençot and C. Morales-Rodrigo, Global existence and convergence to steady-states in a chemorepulsion system, In Parabolic and Navier-Stokes equations, Banach Center Publ. Polish Acad. Sci. Inst. Math., 81 (2008), 105-117. doi: 10.4064/bc81-0-7. Google Scholar

[5]

N. Dunford and J. T. Schwartz, Linear Operators. Ⅰ. General Theory, With the assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics, Vol. 7. Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958. Google Scholar

[6]

E. Espejo and T. Suzuki, Global existence and blow-up for a system describing the aggregation of microglia, Appl. Math. Lett., 35 (2014), 29-34. doi: 10.1016/j.aml.2014.04.007. Google Scholar

[7]

K. Fujie and T. Senba, Application of an Adams type inequality to a two-chemical substances chemotaxis system, J. Differential Equations, 263 (2017), 88-148. doi: 10.1016/j.jde.2017.02.031. Google Scholar

[8]

H. Gajewski and K. Zacharias, Global behavior of a reaction-diffusion system modelling chemotaxis, Math. Nachr., 195 (1998), 77-114. doi: 10.1002/mana.19981950106. Google Scholar

[9]

D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177. doi: 10.1017/S0956792501004363. Google Scholar

[10]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107. doi: 10.1016/j.jde.2004.10.022. Google Scholar

[11]

H. Y. Jin, Boundedness of the attraction-repulsion Keller-Segel system, J. Math. Anal. Appl., 422 (2015), 1463-1478. doi: 10.1016/j.jmaa.2014.09.049. Google Scholar

[12]

H. Y. Jin and Z. A. Wang, Asymptotic dynamics of the one-dimensional attraction-repulsion Keller-Segel model, Math. Methods Appl. Sci., 38 (2015), 444-457. doi: 10.1002/mma.3080. Google Scholar

[13]

H. Y. Jin and Z. A. Wang, Boundedness, blowup and critical mass phenomenon in competing chemotaxis, J. Differential Equations, 260 (2016), 162-196. doi: 10.1016/j.jde.2015.08.040. Google Scholar

[14]

H. Y. Jin and T. Xiang, Repulsion effects on boundedness in a quasilinear attraction-repulsion chemotaxis model in higher dimensions, Discrete Contin. Dyn. Syst. B, 22 (2017), 1-15. Google Scholar

[15]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5. Google Scholar

[16]

Y. Li and Y. X. Li, Blow-up of nonradial solutions to attraction-repulsion chemotaxis system in two dimensions, Nonlinear Anal. Real World Appl., 30 (2016), 170-183. doi: 10.1016/j.nonrwa.2015.12.003. Google Scholar

[17]

Y. H. LiK. Lin and C. L. Mu, Asymptotic behavior for small mass in an attraction-repulsion chemotaxis system, Electron. J. Differential Equations, 146 (2015), 1-13. Google Scholar

[18]

K. Lin and C. L. Mu, Global existence and convergence to steady states for an attraction-repulsion chemotaxis system, Nonlinear Anal. Real World Appl., 31 (2016), 630-642. doi: 10.1016/j.nonrwa.2016.03.012. Google Scholar

[19]

K. LinC. L. Mu and Y. Gao, Boundedness and blow up in the higher-dimensional attraction-repulsion chemotaxis system with nonlinear diffusion, J. Differential Equations, 261 (2016), 4524-4572. doi: 10.1016/j.jde.2016.07.002. Google Scholar

[20]

K. LinC. L. Mu and L. C. Wang, Large time behavior of an attraction-repulsion chemotaxis system, J. Math. Anal. Appl., 426 (2015), 105-124. doi: 10.1016/j.jmaa.2014.12.052. Google Scholar

[21]

K. Lin, C. L. Mu and D. Q. Zhou, Stabilization in a higher-dimensional attraction-repulsion chemotaxis system if repulsion dominates over attraction, preprint, (2018).Google Scholar

[22]

J. Liu and Z. A. Wang, Classical solutions and steady states of an attraction-repulsion chemotaxis in one dimension, J. Biol. Dyn., 6 (2012), 31-41. doi: 10.1080/17513758.2011.571722. Google Scholar

[23]

P. LiuJ. P. Shi and Z. A. Wang, Pattern formation of the attraction-repulsion keller-segel system, Discrete Contin. Dyn. Syst. B, 18 (2013), 2597-2625. doi: 10.3934/dcdsb.2013.18.2597. Google Scholar

[24]

M. LucaA. Chavez-RossL. Edelstein-Keshet and A. Mogilner, Chemotactic signalling, microglia, and Alzheimer's disease senile plague: is there a connection?, Bull. Math. Biol., 65 (2003), 673-730. Google Scholar

[25]

N. Mizoguchi and M. Winkler, Blow-up in the two-dimensional parabolic Keller-Segel system, preprint, 2016.Google Scholar

[26]

M. S. Mock, An initial value problem from semiconductor device theory, SIAM J. Math. Anal., 5 (1974), 597-612. doi: 10.1137/0505061. Google Scholar

[27]

M. S. Mock, Asymptotic behavior of solutions of transport equations for semiconductor devices, J. Math. Anal. Appl., 49 (1975), 215-225. doi: 10.1016/0022-247X(75)90172-9. Google Scholar

[28]

T. Nagai, Blow-up of nonradial solutions to parabolic-elliptic systems modelling chemotaxis in two-dimensional domains, J. Inequal. Appl., 6 (2001), 37-55. doi: 10.1155/S1025583401000042. Google Scholar

[29]

T. NagaiT. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433. Google Scholar

[30]

K. Osaki and A. Yagi, Finite dimensional attractors for one-dimensional Keller-Segel equations, Funkc. Ekvacioj. Ser. Int., 44 (2001), 441-469. Google Scholar

[31]

K. J. Painter and T. Hillen, Volume-filling quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10 (2002), 501-543. Google Scholar

[32]

C. StinnerC. Surulescu and M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969-2007. doi: 10.1137/13094058X. Google Scholar

[33]

Y. Tao and Z. A. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1-36. doi: 10.1142/S0218202512500443. Google Scholar

[34]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715. doi: 10.1016/j.jde.2011.08.019. Google Scholar

[35]

Y. Tao and M. Winkler, Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, J. Differential Equations, 257 (2014), 784-815. doi: 10.1016/j.jde.2014.04.014. Google Scholar

[36]

Y. Tao and M. Winkler, Effects of signal-dependent motilities in a Keller-Segel-type reaction-diffusion system, Math. Models Methods Appl. Sci., 27 (2017), 1645-1683. doi: 10.1142/S0218202517500282. Google Scholar

[37]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Partial Differential Equations, 32 (2007), 849-877. doi: 10.1080/03605300701319003. Google Scholar

[38]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905. doi: 10.1016/j.jde.2010.02.008. Google Scholar

[39]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537. doi: 10.1080/03605300903473426. Google Scholar

[40]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767. doi: 10.1016/j.matpur.2013.01.020. Google Scholar

[41]

H. YuQ. Guo and S. N. Zheng, Finite time blow-up of nonradial solutions in an attraction-repulsion chemotaxis system, Nonlinear Anal. Real World Appl., 34 (2017), 335-342. doi: 10.1016/j.nonrwa.2016.09.007. Google Scholar

[42]

Q. S. Zhang and Y. X. Li, An attraction-repulsion chemotaxis system with logistic source, ZAMM Z. Angew. Math. Mech., 96 (2016), 570-584. doi: 10.1002/zamm.201400311. Google Scholar

[1]

Sainan Wu, Junping Shi, Boying Wu. Global existence of solutions to an attraction-repulsion chemotaxis model with growth. Communications on Pure & Applied Analysis, 2017, 16 (3) : 1037-1058. doi: 10.3934/cpaa.2017050

[2]

Abelardo Duarte-Rodríguez, Lucas C. F. Ferreira, Élder J. Villamizar-Roa. Global existence for an attraction-repulsion chemotaxis fluid model with logistic source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 423-447. doi: 10.3934/dcdsb.2018180

[3]

Hai-Yang Jin, Tian Xiang. Repulsion effects on boundedness in a quasilinear attraction-repulsion chemotaxis model in higher dimensions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3071-3085. doi: 10.3934/dcdsb.2017197

[4]

Yilong Wang, Zhaoyin Xiang. Boundedness in a quasilinear 2D parabolic-parabolic attraction-repulsion chemotaxis system. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1953-1973. doi: 10.3934/dcdsb.2016031

[5]

Shijie Shi, Zhengrong Liu, Hai-Yang Jin. Boundedness and large time behavior of an attraction-repulsion chemotaxis model with logistic source. Kinetic & Related Models, 2017, 10 (3) : 855-878. doi: 10.3934/krm.2017034

[6]

Rachidi B. Salako. Traveling waves of a full parabolic attraction-repulsion chemotaxis system with logistic source. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5945-5973. doi: 10.3934/dcds.2019260

[7]

Ping Liu, Junping Shi, Zhi-An Wang. Pattern formation of the attraction-repulsion Keller-Segel system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2597-2625. doi: 10.3934/dcdsb.2013.18.2597

[8]

Johannes Lankeit, Yulan Wang. Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6099-6121. doi: 10.3934/dcds.2017262

[9]

Ling Liu, Jiashan Zheng. Global existence and boundedness of solution of a parabolic-parabolic-ODE chemotaxis-haptotaxis model with (generalized) logistic source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3357-3377. doi: 10.3934/dcdsb.2018324

[10]

Youshan Tao. Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2705-2722. doi: 10.3934/dcdsb.2013.18.2705

[11]

Sachiko Ishida. Global existence and boundedness for chemotaxis-Navier-Stokes systems with position-dependent sensitivity in 2D bounded domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3463-3482. doi: 10.3934/dcds.2015.35.3463

[12]

Wei Wang, Yan Li, Hao Yu. Global boundedness in higher dimensions for a fully parabolic chemotaxis system with singular sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3663-3669. doi: 10.3934/dcdsb.2017147

[13]

Chunhua Jin. Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1675-1688. doi: 10.3934/dcdsb.2018069

[14]

Mengyao Ding, Wei Wang. Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4665-4684. doi: 10.3934/dcdsb.2018328

[15]

Marcel Freitag. Global existence and boundedness in a chemorepulsion system with superlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5943-5961. doi: 10.3934/dcds.2018258

[16]

T. Hillen, K. Painter, Christian Schmeiser. Global existence for chemotaxis with finite sampling radius. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 125-144. doi: 10.3934/dcdsb.2007.7.125

[17]

Pan Zheng. Global boundedness and decay for a multi-dimensional chemotaxis-haptotaxis system with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 2039-2056. doi: 10.3934/dcdsb.2016035

[18]

Radek Erban, Hyung Ju Hwang. Global existence results for complex hyperbolic models of bacterial chemotaxis. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1239-1260. doi: 10.3934/dcdsb.2006.6.1239

[19]

Huanhuan Qiu, Shangjiang Guo. Global existence and stability in a two-species chemotaxis system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1569-1587. doi: 10.3934/dcdsb.2018220

[20]

Zhanyuan Hou, Stephen Baigent. Global stability and repulsion in autonomous Kolmogorov systems. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1205-1238. doi: 10.3934/cpaa.2015.14.1205

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (118)
  • HTML views (178)
  • Cited by (0)

Other articles
by authors

[Back to Top]