July  2018, 38(7): 3547-3566. doi: 10.3934/dcds.2018150

Global classical solution and stability to a coupled chemotaxis-fluid model with logistic source

School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China

* Corresponding author: jinchhua@126.com

Received  August 2017 Revised  January 2018 Published  April 2018

Fund Project: This work is supported by NSFC(11471127, 11571380), Guangdong Natural Science Funds for Distinguished Young Scholar (2015A030306029)

In this paper, we deal with a coupled chemotaxis-fluid model with logistic source $γ n-μ n^2$. We prove the existence of global classical solution for the chemotaxis-Stokes system in a bounded domain $Ω\subset \mathbb R^3$ for any large initial data. On the basis of this, we further prove that if $γ>0$, the zero solution is not stable; if $γ = 0$, the zero solution is globally asymptotically stable; and if $ 0 < γ < 16μ^2$, the nontrivial steady state $\left(\fracγμ, \fracγμ, 0\right)$ is globally asymptotically stable.

Citation: Chunhua Jin. Global classical solution and stability to a coupled chemotaxis-fluid model with logistic source. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3547-3566. doi: 10.3934/dcds.2018150
References:
[1]

N. BellomoA. Bellouquid and N. Chouhad, From a multiscale derivation of nonlinear cross-diffusion models to Keller-Segel models in a Navier-Stokes fluid, Math. Models Methods Appl. Sci., 26 (2016), 2041-2069. doi: 10.1142/S0218202516400078. Google Scholar

[2]

L. CorriasB. Perthame and H. Zaag, Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milan J. Math., 72 (2004), 1-28. doi: 10.1007/s00032-003-0026-x. Google Scholar

[3]

J. Dolbeault and B. Perthame, Optimal critical mass in the two-dimensional Keller-Segel model in ${\mathbb R}^2$, C. R. Math. Acad. Sci. Paris, 339 (2004), 611-616. doi: 10.1016/j.crma.2004.08.011. Google Scholar

[4]

E. Espejo and T. Suzuki, Reaction terms avoiding aggregation in slow fluids, Nonlinear Analysis: Real World Applications, 21 (2015), 110-126. doi: 10.1016/j.nonrwa.2014.07.001. Google Scholar

[5]

G. P. Galdi, An introduction to the Mathematical Theory of the Navier-Stokes Equations, Springer Tracts in Natural Philosophy, 38. Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-5364-8. Google Scholar

[6]

H. HajajejX. Yu and Z. Zhai, Fractional Gagliardo-Nirenberg and Hardy inequalities under lorentz norms, J. Math. Anal. Appl., 396 (2012), 569-577. doi: 10.1016/j.jmaa.2012.06.054. Google Scholar

[7]

M. A. HerreroE. Medina and J. J. L. Velazquez, Finite-time aggregation into a single point in a reaction-diffusion system, Nonlinearity, 10 (1997), 1739-1754. doi: 10.1088/0951-7715/10/6/016. Google Scholar

[8]

M. Hieber and J. Pruss, Heat kernels and maximal $L^p-L^q$ estimates for parabolic evolution equations, Comm. Partial Diff. Eqs., 22 (1997), 1647-1669. doi: 10.1080/03605309708821314. Google Scholar

[9]

S. Hsu, Limiting behavior for competing species, SIAM J. Appl. Math., 34 (1978), 760-763. doi: 10.1137/0134064. Google Scholar

[10]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5. Google Scholar

[11]

H. Kozono and T. Yanagisawa, Leray's problem on the stationary Navier-Stokes equations with inhomogeneous boundary data, Math. Z., 262 (2009), 27-39. doi: 10.1007/s00209-008-0361-2. Google Scholar

[12]

J. Lankeit, Long-term behaviour in a chemotaxis-fluid system with logistic source, Math. Models Methods Appl. Sci., 26 (2016), 2071-2109. doi: 10.1142/S021820251640008X. Google Scholar

[13]

J. Liu and A. Lorz, A coupled chemotaxis-fluid model: Global existence, Ann. I. H. Poincaré -AN, 28 (2011), 643-652. doi: 10.1016/j.anihpc.2011.04.005. Google Scholar

[14]

J. Liu and Y. Wang, Boundedness and decay property in a three-dimensional Keller-Segel-Stokes system involving tensor-valued sensitivity with saturation, J. Differential Equations, 261 (2016), 967-999. doi: 10.1016/j.jde.2016.03.030. Google Scholar

[15]

A. Lorz, Coupled chemotaxis fluid model, Math. Mod. Meth. Appl. Sci., 20 (2010), 987-1004. doi: 10.1142/S0218202510004507. Google Scholar

[16]

T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., 5 (1995), 581-601. Google Scholar

[17]

K. OsakiT. TsujikawaA. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal., 51 (2002), 119-144. doi: 10.1016/S0362-546X(01)00815-X. Google Scholar

[18]

H. Othmer and A. Stevens, Aggregation, blowup, and collapse: The ABC's of taxis in reinforced random walks, SIAM J. Appl. Math., 57 (1997), 1044-1081. doi: 10.1137/S0036139995288976. Google Scholar

[19]

T. Senba and T. Suzuki, Parabolic system of chemotaxis: Blowup in a finite and the infinite time, Methods Appl. Anal., 8 (2001), 349-367. doi: 10.4310/MAA.2001.v8.n2.a9. Google Scholar

[20]

C. StinnerC. Surulescu and M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969-2007. doi: 10.1137/13094058X. Google Scholar

[21]

Y. Tao and M. Winkler, Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system, Z. Angew. Math. Phys., 66 (2015), 2555-2573. doi: 10.1007/s00033-015-0541-y. Google Scholar

[22]

Y. Tao and M. Winkler, Blow-up prevention by quadratic degradation in a two-dimensional Keller-Segel-Navier-Stokes system, Z. Angew. Math. Phys., 67 (2016), Art. 138, 23 pp. doi: 10.1007/s00033-016-0732-1. Google Scholar

[23]

I. TuvalL. CisnerosC. DombrowskiC. WolgemuthJ. Kessler and R. Goldstein, Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA, 102 (2005), 2277-2282. doi: 10.1073/pnas.0406724102. Google Scholar

[24]

Y. Wang and X. Cao, Global classical solutions of a 3D chemotaxis-Stokes system with rotation, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 3235-3254. doi: 10.3934/dcdsb.2015.20.3235. Google Scholar

[25]

Y. Wang and Z. Xiang, Global existence and boundedness in a Keller-Segel-Stokes system involving atensor-valued sensitivity with saturation, J. Differential Equations, 259 (2015), 7578-7609. doi: 10.1016/j.jde.2015.08.027. Google Scholar

[26]

M. Winkler, Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations, 37 (2012), 319-351. doi: 10.1080/03605302.2011.591865. Google Scholar

[27]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537. doi: 10.1080/03605300903473426. Google Scholar

[28]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905. doi: 10.1016/j.jde.2010.02.008. Google Scholar

[29]

J. Zheng, Boundedness in a three-dimensional chemotaxis-fluid system involving tensorvalued sensitivity with saturation, J. Math. Anal. Appl., 442 (2016), 353-375. doi: 10.1016/j.jmaa.2016.04.047. Google Scholar

show all references

References:
[1]

N. BellomoA. Bellouquid and N. Chouhad, From a multiscale derivation of nonlinear cross-diffusion models to Keller-Segel models in a Navier-Stokes fluid, Math. Models Methods Appl. Sci., 26 (2016), 2041-2069. doi: 10.1142/S0218202516400078. Google Scholar

[2]

L. CorriasB. Perthame and H. Zaag, Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milan J. Math., 72 (2004), 1-28. doi: 10.1007/s00032-003-0026-x. Google Scholar

[3]

J. Dolbeault and B. Perthame, Optimal critical mass in the two-dimensional Keller-Segel model in ${\mathbb R}^2$, C. R. Math. Acad. Sci. Paris, 339 (2004), 611-616. doi: 10.1016/j.crma.2004.08.011. Google Scholar

[4]

E. Espejo and T. Suzuki, Reaction terms avoiding aggregation in slow fluids, Nonlinear Analysis: Real World Applications, 21 (2015), 110-126. doi: 10.1016/j.nonrwa.2014.07.001. Google Scholar

[5]

G. P. Galdi, An introduction to the Mathematical Theory of the Navier-Stokes Equations, Springer Tracts in Natural Philosophy, 38. Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-5364-8. Google Scholar

[6]

H. HajajejX. Yu and Z. Zhai, Fractional Gagliardo-Nirenberg and Hardy inequalities under lorentz norms, J. Math. Anal. Appl., 396 (2012), 569-577. doi: 10.1016/j.jmaa.2012.06.054. Google Scholar

[7]

M. A. HerreroE. Medina and J. J. L. Velazquez, Finite-time aggregation into a single point in a reaction-diffusion system, Nonlinearity, 10 (1997), 1739-1754. doi: 10.1088/0951-7715/10/6/016. Google Scholar

[8]

M. Hieber and J. Pruss, Heat kernels and maximal $L^p-L^q$ estimates for parabolic evolution equations, Comm. Partial Diff. Eqs., 22 (1997), 1647-1669. doi: 10.1080/03605309708821314. Google Scholar

[9]

S. Hsu, Limiting behavior for competing species, SIAM J. Appl. Math., 34 (1978), 760-763. doi: 10.1137/0134064. Google Scholar

[10]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5. Google Scholar

[11]

H. Kozono and T. Yanagisawa, Leray's problem on the stationary Navier-Stokes equations with inhomogeneous boundary data, Math. Z., 262 (2009), 27-39. doi: 10.1007/s00209-008-0361-2. Google Scholar

[12]

J. Lankeit, Long-term behaviour in a chemotaxis-fluid system with logistic source, Math. Models Methods Appl. Sci., 26 (2016), 2071-2109. doi: 10.1142/S021820251640008X. Google Scholar

[13]

J. Liu and A. Lorz, A coupled chemotaxis-fluid model: Global existence, Ann. I. H. Poincaré -AN, 28 (2011), 643-652. doi: 10.1016/j.anihpc.2011.04.005. Google Scholar

[14]

J. Liu and Y. Wang, Boundedness and decay property in a three-dimensional Keller-Segel-Stokes system involving tensor-valued sensitivity with saturation, J. Differential Equations, 261 (2016), 967-999. doi: 10.1016/j.jde.2016.03.030. Google Scholar

[15]

A. Lorz, Coupled chemotaxis fluid model, Math. Mod. Meth. Appl. Sci., 20 (2010), 987-1004. doi: 10.1142/S0218202510004507. Google Scholar

[16]

T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., 5 (1995), 581-601. Google Scholar

[17]

K. OsakiT. TsujikawaA. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal., 51 (2002), 119-144. doi: 10.1016/S0362-546X(01)00815-X. Google Scholar

[18]

H. Othmer and A. Stevens, Aggregation, blowup, and collapse: The ABC's of taxis in reinforced random walks, SIAM J. Appl. Math., 57 (1997), 1044-1081. doi: 10.1137/S0036139995288976. Google Scholar

[19]

T. Senba and T. Suzuki, Parabolic system of chemotaxis: Blowup in a finite and the infinite time, Methods Appl. Anal., 8 (2001), 349-367. doi: 10.4310/MAA.2001.v8.n2.a9. Google Scholar

[20]

C. StinnerC. Surulescu and M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969-2007. doi: 10.1137/13094058X. Google Scholar

[21]

Y. Tao and M. Winkler, Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system, Z. Angew. Math. Phys., 66 (2015), 2555-2573. doi: 10.1007/s00033-015-0541-y. Google Scholar

[22]

Y. Tao and M. Winkler, Blow-up prevention by quadratic degradation in a two-dimensional Keller-Segel-Navier-Stokes system, Z. Angew. Math. Phys., 67 (2016), Art. 138, 23 pp. doi: 10.1007/s00033-016-0732-1. Google Scholar

[23]

I. TuvalL. CisnerosC. DombrowskiC. WolgemuthJ. Kessler and R. Goldstein, Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA, 102 (2005), 2277-2282. doi: 10.1073/pnas.0406724102. Google Scholar

[24]

Y. Wang and X. Cao, Global classical solutions of a 3D chemotaxis-Stokes system with rotation, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 3235-3254. doi: 10.3934/dcdsb.2015.20.3235. Google Scholar

[25]

Y. Wang and Z. Xiang, Global existence and boundedness in a Keller-Segel-Stokes system involving atensor-valued sensitivity with saturation, J. Differential Equations, 259 (2015), 7578-7609. doi: 10.1016/j.jde.2015.08.027. Google Scholar

[26]

M. Winkler, Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations, 37 (2012), 319-351. doi: 10.1080/03605302.2011.591865. Google Scholar

[27]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537. doi: 10.1080/03605300903473426. Google Scholar

[28]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905. doi: 10.1016/j.jde.2010.02.008. Google Scholar

[29]

J. Zheng, Boundedness in a three-dimensional chemotaxis-fluid system involving tensorvalued sensitivity with saturation, J. Math. Anal. Appl., 442 (2016), 353-375. doi: 10.1016/j.jmaa.2016.04.047. Google Scholar

[1]

Yulan Wang, Xinru Cao. Global classical solutions of a 3D chemotaxis-Stokes system with rotation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3235-3254. doi: 10.3934/dcdsb.2015.20.3235

[2]

Xi Wang, Zuhan Liu, Ling Zhou. Asymptotic decay for the classical solution of the chemotaxis system with fractional Laplacian in high dimensions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 4003-4020. doi: 10.3934/dcdsb.2018121

[3]

Huanhuan Qiu, Shangjiang Guo. Global existence and stability in a two-species chemotaxis system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1569-1587. doi: 10.3934/dcdsb.2018220

[4]

Laiqing Meng, Jia Yuan, Xiaoxin Zheng. Global existence of almost energy solution to the two-dimensional chemotaxis-Navier-Stokes equations with partial diffusion. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3413-3441. doi: 10.3934/dcds.2019141

[5]

Feng Li, Yuxiang Li. Global existence of weak solution in a chemotaxis-fluid system with nonlinear diffusion and rotational flux. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5409-5436. doi: 10.3934/dcdsb.2019064

[6]

Yulan Wang. Global solvability in a two-dimensional self-consistent chemotaxis-Navier-Stokes system. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 329-349. doi: 10.3934/dcdss.2020019

[7]

Tobias Black. Global existence and asymptotic stability in a competitive two-species chemotaxis system with two signals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1253-1272. doi: 10.3934/dcdsb.2017061

[8]

Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085

[9]

Shubo Zhao, Ping Liu, Mingchao Jiang. Stability and bifurcation analysis in a chemotaxis bistable growth system. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1165-1174. doi: 10.3934/dcdss.2017063

[10]

Güher Çamliyurt, Igor Kukavica. A local asymptotic expansion for a solution of the Stokes system. Evolution Equations & Control Theory, 2016, 5 (4) : 647-659. doi: 10.3934/eect.2016023

[11]

Hua Zhong, Chunlai Mu, Ke Lin. Global weak solution and boundedness in a three-dimensional competing chemotaxis. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3875-3898. doi: 10.3934/dcds.2018168

[12]

Minghua Yang, Zunwei Fu, Jinyi Sun. Global solutions to Chemotaxis-Navier-Stokes equations in critical Besov spaces. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3427-3460. doi: 10.3934/dcdsb.2018284

[13]

Kentarou Fujie. Global asymptotic stability in a chemotaxis-growth model for tumor invasion. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 203-209. doi: 10.3934/dcdss.2020011

[14]

Zefu Feng, Changjiang Zhu. Global classical large solution to compressible viscous micropolar and heat-conducting fluids with vacuum. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3069-3097. doi: 10.3934/dcds.2019127

[15]

Wei Wang, Yan Li, Hao Yu. Global boundedness in higher dimensions for a fully parabolic chemotaxis system with singular sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3663-3669. doi: 10.3934/dcdsb.2017147

[16]

Johannes Lankeit, Yulan Wang. Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6099-6121. doi: 10.3934/dcds.2017262

[17]

Ke Lin, Chunlai Mu. Global dynamics in a fully parabolic chemotaxis system with logistic source. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5025-5046. doi: 10.3934/dcds.2016018

[18]

Mengyao Ding, Wei Wang. Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4665-4684. doi: 10.3934/dcdsb.2018328

[19]

Philippe Laurençot. Global bounded and unbounded solutions to a chemotaxis system with indirect signal production. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-26. doi: 10.3934/dcdsb.2019145

[20]

Atanas Stefanov. On the Lipschitzness of the solution map for the 2 D Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1471-1490. doi: 10.3934/dcds.2010.26.1471

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (118)
  • HTML views (224)
  • Cited by (1)

Other articles
by authors

[Back to Top]