July  2018, 38(7): 3357-3385. doi: 10.3934/dcds.2018144

Elliptic equations with transmission and Wentzell boundary conditions and an application to steady water waves in the presence of wind

Department of Mathematics, University of Missouri, Columbia, MO 65211, USA

Received  June 2017 Revised  January 2018 Published  April 2018

Fund Project: The first author was supported by the NNSF of China (No. 11501021), the second author was supported by the NNSF of China (No. 11301166)

In this paper, we present results about the existence and uniqueness of solutions of elliptic equations with transmission and Wentzell boundary conditions. We provide Schauder estimates and existence results in Hölder spaces. As an application, we develop an existence theory for small-amplitude two-dimensional traveling waves in an air-water system with surface tension. The water region is assumed to be irrotational and of finite depth, and we permit a general distribution of vorticity in the atmosphere.

Citation: Hung Le. Elliptic equations with transmission and Wentzell boundary conditions and an application to steady water waves in the presence of wind. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3357-3385. doi: 10.3934/dcds.2018144
References:
[1]

C. J. Amick and R. E. L. Turner, A global theory of internal solitary waves in two-fluid systems, Trans. Amer. Math. Soc., 298 (1986), 431-484. doi: 10.1090/S0002-9947-1986-0860375-3. Google Scholar

[2]

C. J. Amick, Semilinear elliptic eigenvalue problems on an infinite strip with an application to stratified fluids, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 11 (1984), 441-499. Google Scholar

[3]

D. E. Apushkinskaya and A. I. Nazarov, A survey of results on nonlinear Venttsel problems, Appl. Math., 45 (2000), 69-80. doi: 10.1023/A:1022288717033. Google Scholar

[4]

D. E. Apushkinskaya and A. I. Nazarov, Linear two-phase Venttsel problems, Ark. Mat., 39 (2001), 201-222. doi: 10.1007/BF02384554. Google Scholar

[5]

A. A. Arkhipova and O. Erlhamahmy, Regularity of solutions to a diffraction-type problem for nondiagonal linear elliptic systems in the Campanato space, J. Math. Sci. (New York), 112 (2002), 3944-3966. doi: 10.1023/A:1020093606080. Google Scholar

[6]

J. Thomas BealeT. Y. Hou and J. S. Lowengrub, Growth rates for the linearized motion of fluid interfaces away from equilibrium, Comm. Pure Appl. Math., 46 (1993), 1269-1301. doi: 10.1002/cpa.3160460903. Google Scholar

[7]

J. Bognár, Indefinite Inner Product Spaces, Springer-Verlag, New York-Heidelberg, 1974. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 78. Google Scholar

[8]

J. L. BonaD. K. Bose and R. E. L. Turner, Finite-amplitude steady waves in stratified fluids, J. Math. Pures Appl. (9), 62 (1983), 389-439(1984). Google Scholar

[9]

V. Bonnaillie-NoëlM. DambrineF. Hérau and G. Vial, On generalized Ventcel's type boundary conditions for Laplace operator in a bounded domain, SIAM J. Math. Anal., 42 (2010), 931-945. doi: 10.1137/090756521. Google Scholar

[10]

M. Borsuk, The transmission problem for elliptic second order equations in a conical domain, Ann. Acad. Pedagog. Crac. Stud. Math., 7 (2008), 61-89. Google Scholar

[11]

M. Borsuk, The transmission problem for quasi-linear elliptic second order equations in a conical domain. Ⅰ, Ⅱ, Nonlinear Anal., 71 (2009), 5032-5083. doi: 10.1016/j.na.2009.03.090. Google Scholar

[12]

M. Borsuk, Transmission Problems for Elliptic Second-order Equations in Non-Smooth Domains, Frontiers in Mathematics. Birkhäuser/Springer Basel AG, Basel, 2010. doi: 10.1007/978-3-0346-0477-2. Google Scholar

[13]

O. BühlerJ. Shatah and S. Walsh, Steady water waves in the presence of wind, SIAM J. Math. Anal., 45 (2013), 2182-2227. doi: 10.1137/120880124. Google Scholar

[14]

O. BühlerJ. ShatahS. Walsh and C. Zeng, On the wind generation of water waves, Arch. Ration. Mech. Anal., 222 (2016), 827-878. doi: 10.1007/s00205-016-1012-0. Google Scholar

[15]

R. M. Chen and S. Walsh, Continuous dependence on the density for stratified steady water waves, Arch. Ration. Mech. Anal., 219 (2016), 741-792. doi: 10.1007/s00205-015-0906-6. Google Scholar

[16]

A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, volume 81 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. doi: 10.1137/1.9781611971873. Google Scholar

[17]

A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity, Comm. Pure Appl. Math., 57 (2004), 481-527. doi: 10.1002/cpa.3046. Google Scholar

[18]

A. Constantin and W. Strauss, Periodic traveling gravity water waves with discontinuous vorticity, Arch. Ration. Mech. Anal., 202 (2011), 133-175. doi: 10.1007/s00205-011-0412-4. Google Scholar

[19]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340. doi: 10.1016/0022-1236(71)90015-2. Google Scholar

[20]

M. -L. Dubreil-Jacotin, Sur la Détermination Rigoureuse des Ondes Permanentes périodiques D'ampleur Finie, (French) 1934. 75 pp. Google Scholar

[21]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. Google Scholar

[22]

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, volume 24 of North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, second edition, 1989. Google Scholar

[23]

I. S. Iohvidov, M. G. Krein and H. Langer, Introduction to the Spectral Theory of Operators in Spaces with an Indefinite Metric, volume 9 of Mathematical Research, Akademie-Verlag, Berlin, 1982. Google Scholar

[24]

K. Kirchgässner, Wave-solutions of reversible systems and applications, J. Differential Equations, 45 (1982), 113-127. doi: 10.1016/0022-0396(82)90058-4. Google Scholar

[25]

P. Korman, Existence of solutions for a class of semilinear noncoercive problems, Nonlinear Anal., 10 (1986), 1471-1476. doi: 10.1016/0362-546X(86)90116-1. Google Scholar

[26]

O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York-London, 1968. Google Scholar

[27]

K. Lankers and G. Friesecke, Fast, large-amplitude solitary waves in the 2D Euler equations for stratified fluids, Nonlinear Anal., 29 (1997), 1061-1078. doi: 10.1016/S0362-546X(96)00089-2. Google Scholar

[28]

Y. Luo, On the quasilinear elliptic Venttsel$ \prime $ boundary value problem, Nonlinear Anal., 16 (1991), 761-769. doi: 10.1016/0362-546X(91)90081-B. Google Scholar

[29]

Y. Luo and N. S. Trudinger, Linear second order elliptic equations with Venttsel boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A, 118 (1991), 193-207. doi: 10.1017/S0308210500029048. Google Scholar

[30]

Y. Luo and N. S. Trudinger, Quasilinear second order elliptic equations with Venttsel boundary conditions, Potential Anal., 3 (1994), 219-243. doi: 10.1007/BF01053434. Google Scholar

[31]

C. I. Martin and B.-V. Matioc, Existence of capillary-gravity water waves with piecewise constant vorticity, J. Differential Equations, 256 (2014), 3086-3114. doi: 10.1016/j.jde.2014.01.036. Google Scholar

[32]

A.-V. Matioc and B.-V. Matioc, Capillary-gravity water waves with discontinuous vorticity: Existence and regularity results, Comm. Math. Phys., 330 (2014), 859-886. doi: 10.1007/s00220-014-1918-z. Google Scholar

[33]

J. W. Miles, On the generation of surface waves by shear flows, J. Fluid Mech., 3 (1957), 185-204. doi: 10.1017/S0022112057000567. Google Scholar

[34]

A. I. Nazarov and A. A. Paletskikh, On the Hölder property of the solutions of the elliptic Venttsel problem, Dokl. Akad. Nauk, 465 (2015), 532-536. Google Scholar

[35]

D. V. Nilsson, Internal gravity-capillary solitary waves in finite depth, Math. Methods Appl. Sci., 40 (2017), 1053-1080. doi: 10.1002/mma.4036. Google Scholar

[36]

O. A. Oleǐnik, Boundary-value problems for linear equations of elliptic parabolic type with discontinuous coefficients, Izv. Akad. Nauk SSSR Ser. Mat., 25 (1961), 3-20. Google Scholar

[37]

M. Schechter, A generalization of the problem of transmission, Ann. Scuola Norm. Sup. Pisa (3), 14 (1960), 207-236. Google Scholar

[38]

Z. G. Šeftel', Estimates in $ L_{p} $ of solutions of elliptic equations with discontinuous coefficients and satisfying general boundary conditions and conjugacy conditions, Soviet Math. Dokl., 4 (1963), 321-324. Google Scholar

[39]

W. A. Strauss, Steady water waves, Bull. Amer. Math. Soc. (N.S.), 47 (2010), 671-694. doi: 10.1090/S0273-0979-2010-01302-1. Google Scholar

[40]

S. M. Sun, Existence of solitary internal waves in a two-layer fluid of infinite depth, In Proceedings of the Second World Congress of Nonlinear Analysts, Part 8 (Athens, 1996), 30 (1997), 5481-5490. doi: 10.1016/S0362-546X(97)00178-8. Google Scholar

[41]

S. M. Sun, Solitary internal waves in continuously stratified fluids of great depth, Phys. D, 166 (2002), 76-103. doi: 10.1016/S0167-2789(02)00424-4. Google Scholar

[42]

R. E. L. Turner, Internal waves in fluids with rapidly varying density, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 8 (1981), 513-573. Google Scholar

[43]

A. D. Ventcel', On boundary conditions for multi-dimensional diffusion processes, Theor. Probability Appl., 4 (1959), 164-177. doi: 10.1137/1104014. Google Scholar

[44]

E. Wahlén, Steady periodic capillary-gravity waves with vorticity, SIAM J. Math. Anal., 38 (2006), 921-943. doi: 10.1137/050630465. Google Scholar

[45]

E. Wahlén, Steady periodic capillary waves with vorticity, Ark. Mat., 44 (2006), 367-387. doi: 10.1007/s11512-006-0024-7. Google Scholar

[46]

S. Walsh, Stratified steady periodic water waves, SIAM J. Math. Anal., 41 (2009), 1054-1105. doi: 10.1137/080721583. Google Scholar

[47]

S. Walsh, Steady stratified periodic gravity waves with surface tension Ⅰ: Local bifurcation, Discrete Contin. Dyn. Syst., 34 (2014), 3241-3285. doi: 10.3934/dcds.2014.34.3241. Google Scholar

[48]

S. Walsh, Steady stratified periodic gravity waves with surface tension Ⅱ: global bifurcation, Discrete Contin. Dyn. Syst., 34 (2014), 3287-3315. doi: 10.3934/dcds.2014.34.3287. Google Scholar

[49]

J. R. Wilton, On ripples, Phil. Mag., 1915, 29pp.Google Scholar

show all references

References:
[1]

C. J. Amick and R. E. L. Turner, A global theory of internal solitary waves in two-fluid systems, Trans. Amer. Math. Soc., 298 (1986), 431-484. doi: 10.1090/S0002-9947-1986-0860375-3. Google Scholar

[2]

C. J. Amick, Semilinear elliptic eigenvalue problems on an infinite strip with an application to stratified fluids, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 11 (1984), 441-499. Google Scholar

[3]

D. E. Apushkinskaya and A. I. Nazarov, A survey of results on nonlinear Venttsel problems, Appl. Math., 45 (2000), 69-80. doi: 10.1023/A:1022288717033. Google Scholar

[4]

D. E. Apushkinskaya and A. I. Nazarov, Linear two-phase Venttsel problems, Ark. Mat., 39 (2001), 201-222. doi: 10.1007/BF02384554. Google Scholar

[5]

A. A. Arkhipova and O. Erlhamahmy, Regularity of solutions to a diffraction-type problem for nondiagonal linear elliptic systems in the Campanato space, J. Math. Sci. (New York), 112 (2002), 3944-3966. doi: 10.1023/A:1020093606080. Google Scholar

[6]

J. Thomas BealeT. Y. Hou and J. S. Lowengrub, Growth rates for the linearized motion of fluid interfaces away from equilibrium, Comm. Pure Appl. Math., 46 (1993), 1269-1301. doi: 10.1002/cpa.3160460903. Google Scholar

[7]

J. Bognár, Indefinite Inner Product Spaces, Springer-Verlag, New York-Heidelberg, 1974. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 78. Google Scholar

[8]

J. L. BonaD. K. Bose and R. E. L. Turner, Finite-amplitude steady waves in stratified fluids, J. Math. Pures Appl. (9), 62 (1983), 389-439(1984). Google Scholar

[9]

V. Bonnaillie-NoëlM. DambrineF. Hérau and G. Vial, On generalized Ventcel's type boundary conditions for Laplace operator in a bounded domain, SIAM J. Math. Anal., 42 (2010), 931-945. doi: 10.1137/090756521. Google Scholar

[10]

M. Borsuk, The transmission problem for elliptic second order equations in a conical domain, Ann. Acad. Pedagog. Crac. Stud. Math., 7 (2008), 61-89. Google Scholar

[11]

M. Borsuk, The transmission problem for quasi-linear elliptic second order equations in a conical domain. Ⅰ, Ⅱ, Nonlinear Anal., 71 (2009), 5032-5083. doi: 10.1016/j.na.2009.03.090. Google Scholar

[12]

M. Borsuk, Transmission Problems for Elliptic Second-order Equations in Non-Smooth Domains, Frontiers in Mathematics. Birkhäuser/Springer Basel AG, Basel, 2010. doi: 10.1007/978-3-0346-0477-2. Google Scholar

[13]

O. BühlerJ. Shatah and S. Walsh, Steady water waves in the presence of wind, SIAM J. Math. Anal., 45 (2013), 2182-2227. doi: 10.1137/120880124. Google Scholar

[14]

O. BühlerJ. ShatahS. Walsh and C. Zeng, On the wind generation of water waves, Arch. Ration. Mech. Anal., 222 (2016), 827-878. doi: 10.1007/s00205-016-1012-0. Google Scholar

[15]

R. M. Chen and S. Walsh, Continuous dependence on the density for stratified steady water waves, Arch. Ration. Mech. Anal., 219 (2016), 741-792. doi: 10.1007/s00205-015-0906-6. Google Scholar

[16]

A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, volume 81 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. doi: 10.1137/1.9781611971873. Google Scholar

[17]

A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity, Comm. Pure Appl. Math., 57 (2004), 481-527. doi: 10.1002/cpa.3046. Google Scholar

[18]

A. Constantin and W. Strauss, Periodic traveling gravity water waves with discontinuous vorticity, Arch. Ration. Mech. Anal., 202 (2011), 133-175. doi: 10.1007/s00205-011-0412-4. Google Scholar

[19]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340. doi: 10.1016/0022-1236(71)90015-2. Google Scholar

[20]

M. -L. Dubreil-Jacotin, Sur la Détermination Rigoureuse des Ondes Permanentes périodiques D'ampleur Finie, (French) 1934. 75 pp. Google Scholar

[21]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. Google Scholar

[22]

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, volume 24 of North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, second edition, 1989. Google Scholar

[23]

I. S. Iohvidov, M. G. Krein and H. Langer, Introduction to the Spectral Theory of Operators in Spaces with an Indefinite Metric, volume 9 of Mathematical Research, Akademie-Verlag, Berlin, 1982. Google Scholar

[24]

K. Kirchgässner, Wave-solutions of reversible systems and applications, J. Differential Equations, 45 (1982), 113-127. doi: 10.1016/0022-0396(82)90058-4. Google Scholar

[25]

P. Korman, Existence of solutions for a class of semilinear noncoercive problems, Nonlinear Anal., 10 (1986), 1471-1476. doi: 10.1016/0362-546X(86)90116-1. Google Scholar

[26]

O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York-London, 1968. Google Scholar

[27]

K. Lankers and G. Friesecke, Fast, large-amplitude solitary waves in the 2D Euler equations for stratified fluids, Nonlinear Anal., 29 (1997), 1061-1078. doi: 10.1016/S0362-546X(96)00089-2. Google Scholar

[28]

Y. Luo, On the quasilinear elliptic Venttsel$ \prime $ boundary value problem, Nonlinear Anal., 16 (1991), 761-769. doi: 10.1016/0362-546X(91)90081-B. Google Scholar

[29]

Y. Luo and N. S. Trudinger, Linear second order elliptic equations with Venttsel boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A, 118 (1991), 193-207. doi: 10.1017/S0308210500029048. Google Scholar

[30]

Y. Luo and N. S. Trudinger, Quasilinear second order elliptic equations with Venttsel boundary conditions, Potential Anal., 3 (1994), 219-243. doi: 10.1007/BF01053434. Google Scholar

[31]

C. I. Martin and B.-V. Matioc, Existence of capillary-gravity water waves with piecewise constant vorticity, J. Differential Equations, 256 (2014), 3086-3114. doi: 10.1016/j.jde.2014.01.036. Google Scholar

[32]

A.-V. Matioc and B.-V. Matioc, Capillary-gravity water waves with discontinuous vorticity: Existence and regularity results, Comm. Math. Phys., 330 (2014), 859-886. doi: 10.1007/s00220-014-1918-z. Google Scholar

[33]

J. W. Miles, On the generation of surface waves by shear flows, J. Fluid Mech., 3 (1957), 185-204. doi: 10.1017/S0022112057000567. Google Scholar

[34]

A. I. Nazarov and A. A. Paletskikh, On the Hölder property of the solutions of the elliptic Venttsel problem, Dokl. Akad. Nauk, 465 (2015), 532-536. Google Scholar

[35]

D. V. Nilsson, Internal gravity-capillary solitary waves in finite depth, Math. Methods Appl. Sci., 40 (2017), 1053-1080. doi: 10.1002/mma.4036. Google Scholar

[36]

O. A. Oleǐnik, Boundary-value problems for linear equations of elliptic parabolic type with discontinuous coefficients, Izv. Akad. Nauk SSSR Ser. Mat., 25 (1961), 3-20. Google Scholar

[37]

M. Schechter, A generalization of the problem of transmission, Ann. Scuola Norm. Sup. Pisa (3), 14 (1960), 207-236. Google Scholar

[38]

Z. G. Šeftel', Estimates in $ L_{p} $ of solutions of elliptic equations with discontinuous coefficients and satisfying general boundary conditions and conjugacy conditions, Soviet Math. Dokl., 4 (1963), 321-324. Google Scholar

[39]

W. A. Strauss, Steady water waves, Bull. Amer. Math. Soc. (N.S.), 47 (2010), 671-694. doi: 10.1090/S0273-0979-2010-01302-1. Google Scholar

[40]

S. M. Sun, Existence of solitary internal waves in a two-layer fluid of infinite depth, In Proceedings of the Second World Congress of Nonlinear Analysts, Part 8 (Athens, 1996), 30 (1997), 5481-5490. doi: 10.1016/S0362-546X(97)00178-8. Google Scholar

[41]

S. M. Sun, Solitary internal waves in continuously stratified fluids of great depth, Phys. D, 166 (2002), 76-103. doi: 10.1016/S0167-2789(02)00424-4. Google Scholar

[42]

R. E. L. Turner, Internal waves in fluids with rapidly varying density, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 8 (1981), 513-573. Google Scholar

[43]

A. D. Ventcel', On boundary conditions for multi-dimensional diffusion processes, Theor. Probability Appl., 4 (1959), 164-177. doi: 10.1137/1104014. Google Scholar

[44]

E. Wahlén, Steady periodic capillary-gravity waves with vorticity, SIAM J. Math. Anal., 38 (2006), 921-943. doi: 10.1137/050630465. Google Scholar

[45]

E. Wahlén, Steady periodic capillary waves with vorticity, Ark. Mat., 44 (2006), 367-387. doi: 10.1007/s11512-006-0024-7. Google Scholar

[46]

S. Walsh, Stratified steady periodic water waves, SIAM J. Math. Anal., 41 (2009), 1054-1105. doi: 10.1137/080721583. Google Scholar

[47]

S. Walsh, Steady stratified periodic gravity waves with surface tension Ⅰ: Local bifurcation, Discrete Contin. Dyn. Syst., 34 (2014), 3241-3285. doi: 10.3934/dcds.2014.34.3241. Google Scholar

[48]

S. Walsh, Steady stratified periodic gravity waves with surface tension Ⅱ: global bifurcation, Discrete Contin. Dyn. Syst., 34 (2014), 3287-3315. doi: 10.3934/dcds.2014.34.3287. Google Scholar

[49]

J. R. Wilton, On ripples, Phil. Mag., 1915, 29pp.Google Scholar

Figure 1.  The air-water system
[1]

Mahamadi Warma. Parabolic and elliptic problems with general Wentzell boundary condition on Lipschitz domains. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1881-1905. doi: 10.3934/cpaa.2013.12.1881

[2]

Imen Benabbas, Djamel Eddine Teniou. Observability of wave equation with Ventcel dynamic condition. Evolution Equations & Control Theory, 2018, 7 (4) : 545-570. doi: 10.3934/eect.2018026

[3]

Hongwei Zhang, Qingying Hu. Asymptotic behavior and nonexistence of wave equation with nonlinear boundary condition. Communications on Pure & Applied Analysis, 2005, 4 (4) : 861-869. doi: 10.3934/cpaa.2005.4.861

[4]

Fabrizio Colombo, Davide Guidetti. Identification of the memory kernel in the strongly damped wave equation by a flux condition. Communications on Pure & Applied Analysis, 2009, 8 (2) : 601-620. doi: 10.3934/cpaa.2009.8.601

[5]

Muhammad I. Mustafa. On the control of the wave equation by memory-type boundary condition. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1179-1192. doi: 10.3934/dcds.2015.35.1179

[6]

Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure & Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191

[7]

Khadijah Sharaf. A perturbation result for a critical elliptic equation with zero Dirichlet boundary condition. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1691-1706. doi: 10.3934/dcds.2017070

[8]

Min Chen, Nghiem V. Nguyen, Shu-Ming Sun. Solitary-wave solutions to Boussinesq systems with large surface tension. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1153-1184. doi: 10.3934/dcds.2010.26.1153

[9]

Umberto De Maio, Akamabadath K. Nandakumaran, Carmen Perugia. Exact internal controllability for the wave equation in a domain with oscillating boundary with Neumann boundary condition. Evolution Equations & Control Theory, 2015, 4 (3) : 325-346. doi: 10.3934/eect.2015.4.325

[10]

Tsung-Fang Wu. Multiplicity of positive solutions for a semilinear elliptic equation in $R_+^N$ with nonlinear boundary condition. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1675-1696. doi: 10.3934/cpaa.2010.9.1675

[11]

Vyacheslav A. Trofimov, Evgeny M. Trykin. A new way for decreasing of amplitude of wave reflected from artificial boundary condition for 1D nonlinear Schrödinger equation. Conference Publications, 2015, 2015 (special) : 1070-1078. doi: 10.3934/proc.2015.1070

[12]

Sergei Avdonin, Jeff Park, Luz de Teresa. The Kalman condition for the boundary controllability of coupled 1-d wave equations. Evolution Equations & Control Theory, 2019, 0 (0) : 0-0. doi: 10.3934/eect.2020005

[13]

J. García-Melián, Julio D. Rossi, José Sabina de Lis. A convex-concave elliptic problem with a parameter on the boundary condition. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1095-1124. doi: 10.3934/dcds.2012.32.1095

[14]

Patrick Winkert. Multiplicity results for a class of elliptic problems with nonlinear boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (2) : 785-802. doi: 10.3934/cpaa.2013.12.785

[15]

Piero Montecchiari, Paul H. Rabinowitz. A nondegeneracy condition for a semilinear elliptic system and the existence of 1- bump solutions. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 1-18. doi: 10.3934/dcds.2019241

[16]

Hakima Bessaih, Yalchin Efendiev, Florin Maris. Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks & Heterogeneous Media, 2015, 10 (2) : 343-367. doi: 10.3934/nhm.2015.10.343

[17]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[18]

Cong He, Hongjun Yu. Large time behavior of the solution to the Landau Equation with specular reflective boundary condition. Kinetic & Related Models, 2013, 6 (3) : 601-623. doi: 10.3934/krm.2013.6.601

[19]

Marek Fila, Kazuhiro Ishige, Tatsuki Kawakami. Convergence to the Poisson kernel for the Laplace equation with a nonlinear dynamical boundary condition. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1285-1301. doi: 10.3934/cpaa.2012.11.1285

[20]

Keng Deng, Zhihua Dong. Blow-up for the heat equation with a general memory boundary condition. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2147-2156. doi: 10.3934/cpaa.2012.11.2147

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (65)
  • HTML views (157)
  • Cited by (0)

Other articles
by authors

[Back to Top]