June  2018, 38(6): 3055-3083. doi: 10.3934/dcds.2018133

Interface stabilization of a parabolic-hyperbolic pde system with delay in the interaction

1. 

Department of Mathematics and Computer Science, University of the Philippines Baguio, Governor Pack Road, 2600 Baguio, Philippines

2. 

Institute for Mathematics and Scientific Computing, University of Graz, Heinrichstrasse 36, 8010 Graz, Austria

3. 

RICAM Institute, Austrian Academy of Sciences, Altenbergerstrasse 69, 4040 Linz, Austria

* Corresponding author

Received  October 2017 Revised  January 2018 Published  April 2018

Fund Project: This work was supported in part by the ERC advanced grant 668998 (OCLOC) under the EUs H2020 research program

A coupled parabolic-hyperbolic system of partial differential equations modeling the interaction of a structure submerged in a fluid is studied. The system being considered incorporates delays in the interaction on the interface between the fluid and the solid. We study the stability properties of the interaction model under suitable assumptions between the competing strengths of the delays and the feedback controls.

Citation: Gilbert Peralta, Karl Kunisch. Interface stabilization of a parabolic-hyperbolic pde system with delay in the interaction. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 3055-3083. doi: 10.3934/dcds.2018133
References:
[1]

W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc., 360 (1988), 837-852. doi: 10.1090/S0002-9947-1988-0933321-3. Google Scholar

[2]

G. Avalos and F. Bucci, Rational rates of uniform decay for strong solutions to a fluid-structure PDE system, J. Differential Equations, 258 (2015), 4398-4423. doi: 10.1016/j.jde.2015.01.037. Google Scholar

[3]

G. Avalos and R. Triggiani, The coupled PDE system arising in fluid-structure interaction, Part Ⅰ: Explicit semigroup generator and its spectral properties, Contemporary Mathematics, 440 (2007), 15-54. Google Scholar

[4]

G. Avalos and R. Triggiani, Semigroup wellposedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction, Discr. Cont. Dynam. Sys., 2 (2009), 417-447. doi: 10.3934/dcdss.2009.2.417. Google Scholar

[5]

G. Avalos and R. Triggiani, Rational decay rates for a PDE heat-structure interaction: A frequency domain approach, Evol. Equ. Control Theory, 2 (2013), 233-253. doi: 10.3934/eect.2013.2.233. Google Scholar

[6]

G. Avalos and R. Triggiani, Fluid structure interaction with and without internal dissipation of the structure: A contrast study in stability, Evol. Equ. Control Theory, 2 (2013), 563-598. doi: 10.3934/eect.2013.2.563. Google Scholar

[7]

G. AvalosI. Lasiecka and R. Trigianni, Higher regularity of a coupled parabolic-hyperbolic fluid structure interactive system, Georgian Math. J., 15 (2008), 403-437. Google Scholar

[8]

G. AvalosI. Lasiecka and R. Trigianni, Heat-wave interaction in 2-3 dimensions: Optimal rational decay rate, Journal of Mathematical Analysis and its Applications, 437 (2016), 782-815. doi: 10.1016/j.jmaa.2015.12.051. Google Scholar

[9]

V. BarbuZ. GrujićI. Lasiecka and A. Tuffaha, Existence of the energy-level weak solutions for a nonlinear fluid-structure interaction model, Contemporary Mathematics, 440 (2007), 55-82. Google Scholar

[10]

V. BarbuZ. GrujićI. Lasiecka and A. Tuffaha, Smoothness of weak solutions to a nonlinear fluid-structure interaction model, Indiana U. Math. J., 57 (2008), 1173-1207. doi: 10.1512/iumj.2008.57.3284. Google Scholar

[11]

A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Mathematische Annalen, 347 (2010), 455-478. doi: 10.1007/s00208-009-0439-0. Google Scholar

[12]

R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedback, SIAM J. Control Optim., 26 (1988), 697-713. doi: 10.1137/0326040. Google Scholar

[13]

R. DatkoJ. Lagnese and P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24 (1986), 152-156. doi: 10.1137/0324007. Google Scholar

[14]

W. DeschE. FašangováJ. Milota and G. Propst, Stabilization through viscoelastic boundary damping: A semigroup approach, Semigroup Forum, 80 (2010), 405-415. doi: 10.1007/s00233-009-9197-2. Google Scholar

[15]

Q. DuM. D. GunzburgerL. S. Hou and J. Lee, Analysis of a linear fluid-structure interaction problem, Discr. and Contin. Dynam. Systems, 9 (2003), 633-650. doi: 10.3934/dcds.2003.9.633. Google Scholar

[16]

K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, 2nd ed., Springer, Berlin, 2000. Google Scholar

[17]

L. C. Evans, Partial Differential Equations, Amer. Math. Soc., Providence, RI, 1993.Google Scholar

[18]

M. Kirane and B. Said-Houari, Existence and asymptotic stability of a viscoelastic wave equation with delay, Z. Angew. Math. Phys., 62 (2011), 1065-1082. doi: 10.1007/s00033-011-0145-0. Google Scholar

[19]

Lasiecka and Y. Lu, Asymptotic stability of finite energy in Navier Stokes-elastic wave interaction, Semigroup Forum, 82 (2011), 61-82. doi: 10.1007/s00233-010-9281-7. Google Scholar

[20]

I. Lasiecka and Y. Lu, Interface feedback control stabilization of a nonlinear fluid-structure interaction, Nonlinear Analysis, 75 (2012), 1449-1460. doi: 10.1016/j.na.2011.04.018. Google Scholar

[21]

I. Lasiecka and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators, J. Math. Pure Appl., 65 (1986), 149-192. Google Scholar

[22]

I. Lasiecka and R. Triggiani, Exponential uniform energy decay rates of the wave equation in a bounded region with $L^2(0,T;L^2(Γ))$-boundary feedback in the Dirichlet B.C., J. Diff. Eqns., 66 (1987), 340-390. doi: 10.1016/0022-0396(87)90025-8. Google Scholar

[23]

I. Lasiecka and R. Triggiani, Exact controllability for the wave equation with Neumann boundary control, Appl. Math. Optimiz., 19 (1989), 243-290. doi: 10.1007/BF01448201. Google Scholar

[24]

I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories; Vol. II: Abstract Hyperbolic Equations, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2000. Google Scholar

[25]

J. L. Lions, Contrôlabilité Exacte, Stabilisation et Perturbations des Systémes Distribués, Vol. 1, Masson, Paris, 1988. Google Scholar

[26]

J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. 1, Springer-Verlag, New York, (1972) Google Scholar

[27]

J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol. 2, Springer, Heidelberg, 1972. Google Scholar

[28]

L. Lu, Numerical stability of θ-methods for systems of differential equations with several delay terms, J. Comput. Apple. Math., 34 (1991), 291-304. doi: 10.1016/0377-0427(91)90090-7. Google Scholar

[29]

Y. Lu, Stabilization of a fluid structure interaction with nonlinear damping, Control and Cybernetics, 42 (2013), 155-181. Google Scholar

[30]

Y. Lu, Uniform decay rates for the energy in nonlinear fluid structure interaction with monotone viscous damping, Palest. J. Math., 2 (2013), 215-232. Google Scholar

[31]

Y. I. Lyubich and V. Q. Phong, Asymptotic stability of linear differential equations in Banach spaces, Studia Matematica, 88 (1988), 37-42. doi: 10.4064/sm-88-1-37-42. Google Scholar

[32]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585. doi: 10.1137/060648891. Google Scholar

[33]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. Google Scholar

[34]

G. Peralta, A fluid-structure interaction model with damping and delay in the structure, Z. Angew. Math. Phys., 67 (2016), Art. 10, 20 pp. Google Scholar

[35]

G. Peralta and G. Propst, Stability and boundary controllability of a linearized model of flow in an elastic tube, ESAIM: Control, Optimisation and Calculus of Variations, 21 (2015), 583-601. doi: 10.1051/cocv/2014039. Google Scholar

[36]

G. Peralta and G. Propst, Well-posedness and regularity of linear hyperbolic systems with dynamic boundary conditions, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 146 (2016), 1047-1080. doi: 10.1017/S0308210515000827. Google Scholar

[37]

G. Peralta and Y. Ueda, Stability conditions for a system of delay differential equations and its application, in preparation.Google Scholar

[38]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser-Verlag, Basel, 2009. Google Scholar

show all references

References:
[1]

W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc., 360 (1988), 837-852. doi: 10.1090/S0002-9947-1988-0933321-3. Google Scholar

[2]

G. Avalos and F. Bucci, Rational rates of uniform decay for strong solutions to a fluid-structure PDE system, J. Differential Equations, 258 (2015), 4398-4423. doi: 10.1016/j.jde.2015.01.037. Google Scholar

[3]

G. Avalos and R. Triggiani, The coupled PDE system arising in fluid-structure interaction, Part Ⅰ: Explicit semigroup generator and its spectral properties, Contemporary Mathematics, 440 (2007), 15-54. Google Scholar

[4]

G. Avalos and R. Triggiani, Semigroup wellposedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction, Discr. Cont. Dynam. Sys., 2 (2009), 417-447. doi: 10.3934/dcdss.2009.2.417. Google Scholar

[5]

G. Avalos and R. Triggiani, Rational decay rates for a PDE heat-structure interaction: A frequency domain approach, Evol. Equ. Control Theory, 2 (2013), 233-253. doi: 10.3934/eect.2013.2.233. Google Scholar

[6]

G. Avalos and R. Triggiani, Fluid structure interaction with and without internal dissipation of the structure: A contrast study in stability, Evol. Equ. Control Theory, 2 (2013), 563-598. doi: 10.3934/eect.2013.2.563. Google Scholar

[7]

G. AvalosI. Lasiecka and R. Trigianni, Higher regularity of a coupled parabolic-hyperbolic fluid structure interactive system, Georgian Math. J., 15 (2008), 403-437. Google Scholar

[8]

G. AvalosI. Lasiecka and R. Trigianni, Heat-wave interaction in 2-3 dimensions: Optimal rational decay rate, Journal of Mathematical Analysis and its Applications, 437 (2016), 782-815. doi: 10.1016/j.jmaa.2015.12.051. Google Scholar

[9]

V. BarbuZ. GrujićI. Lasiecka and A. Tuffaha, Existence of the energy-level weak solutions for a nonlinear fluid-structure interaction model, Contemporary Mathematics, 440 (2007), 55-82. Google Scholar

[10]

V. BarbuZ. GrujićI. Lasiecka and A. Tuffaha, Smoothness of weak solutions to a nonlinear fluid-structure interaction model, Indiana U. Math. J., 57 (2008), 1173-1207. doi: 10.1512/iumj.2008.57.3284. Google Scholar

[11]

A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Mathematische Annalen, 347 (2010), 455-478. doi: 10.1007/s00208-009-0439-0. Google Scholar

[12]

R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedback, SIAM J. Control Optim., 26 (1988), 697-713. doi: 10.1137/0326040. Google Scholar

[13]

R. DatkoJ. Lagnese and P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24 (1986), 152-156. doi: 10.1137/0324007. Google Scholar

[14]

W. DeschE. FašangováJ. Milota and G. Propst, Stabilization through viscoelastic boundary damping: A semigroup approach, Semigroup Forum, 80 (2010), 405-415. doi: 10.1007/s00233-009-9197-2. Google Scholar

[15]

Q. DuM. D. GunzburgerL. S. Hou and J. Lee, Analysis of a linear fluid-structure interaction problem, Discr. and Contin. Dynam. Systems, 9 (2003), 633-650. doi: 10.3934/dcds.2003.9.633. Google Scholar

[16]

K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, 2nd ed., Springer, Berlin, 2000. Google Scholar

[17]

L. C. Evans, Partial Differential Equations, Amer. Math. Soc., Providence, RI, 1993.Google Scholar

[18]

M. Kirane and B. Said-Houari, Existence and asymptotic stability of a viscoelastic wave equation with delay, Z. Angew. Math. Phys., 62 (2011), 1065-1082. doi: 10.1007/s00033-011-0145-0. Google Scholar

[19]

Lasiecka and Y. Lu, Asymptotic stability of finite energy in Navier Stokes-elastic wave interaction, Semigroup Forum, 82 (2011), 61-82. doi: 10.1007/s00233-010-9281-7. Google Scholar

[20]

I. Lasiecka and Y. Lu, Interface feedback control stabilization of a nonlinear fluid-structure interaction, Nonlinear Analysis, 75 (2012), 1449-1460. doi: 10.1016/j.na.2011.04.018. Google Scholar

[21]

I. Lasiecka and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators, J. Math. Pure Appl., 65 (1986), 149-192. Google Scholar

[22]

I. Lasiecka and R. Triggiani, Exponential uniform energy decay rates of the wave equation in a bounded region with $L^2(0,T;L^2(Γ))$-boundary feedback in the Dirichlet B.C., J. Diff. Eqns., 66 (1987), 340-390. doi: 10.1016/0022-0396(87)90025-8. Google Scholar

[23]

I. Lasiecka and R. Triggiani, Exact controllability for the wave equation with Neumann boundary control, Appl. Math. Optimiz., 19 (1989), 243-290. doi: 10.1007/BF01448201. Google Scholar

[24]

I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories; Vol. II: Abstract Hyperbolic Equations, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2000. Google Scholar

[25]

J. L. Lions, Contrôlabilité Exacte, Stabilisation et Perturbations des Systémes Distribués, Vol. 1, Masson, Paris, 1988. Google Scholar

[26]

J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. 1, Springer-Verlag, New York, (1972) Google Scholar

[27]

J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol. 2, Springer, Heidelberg, 1972. Google Scholar

[28]

L. Lu, Numerical stability of θ-methods for systems of differential equations with several delay terms, J. Comput. Apple. Math., 34 (1991), 291-304. doi: 10.1016/0377-0427(91)90090-7. Google Scholar

[29]

Y. Lu, Stabilization of a fluid structure interaction with nonlinear damping, Control and Cybernetics, 42 (2013), 155-181. Google Scholar

[30]

Y. Lu, Uniform decay rates for the energy in nonlinear fluid structure interaction with monotone viscous damping, Palest. J. Math., 2 (2013), 215-232. Google Scholar

[31]

Y. I. Lyubich and V. Q. Phong, Asymptotic stability of linear differential equations in Banach spaces, Studia Matematica, 88 (1988), 37-42. doi: 10.4064/sm-88-1-37-42. Google Scholar

[32]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585. doi: 10.1137/060648891. Google Scholar

[33]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. Google Scholar

[34]

G. Peralta, A fluid-structure interaction model with damping and delay in the structure, Z. Angew. Math. Phys., 67 (2016), Art. 10, 20 pp. Google Scholar

[35]

G. Peralta and G. Propst, Stability and boundary controllability of a linearized model of flow in an elastic tube, ESAIM: Control, Optimisation and Calculus of Variations, 21 (2015), 583-601. doi: 10.1051/cocv/2014039. Google Scholar

[36]

G. Peralta and G. Propst, Well-posedness and regularity of linear hyperbolic systems with dynamic boundary conditions, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 146 (2016), 1047-1080. doi: 10.1017/S0308210515000827. Google Scholar

[37]

G. Peralta and Y. Ueda, Stability conditions for a system of delay differential equations and its application, in preparation.Google Scholar

[38]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser-Verlag, Basel, 2009. Google Scholar

[1]

George Avalos, Roberto Triggiani. Fluid-structure interaction with and without internal dissipation of the structure: A contrast study in stability. Evolution Equations & Control Theory, 2013, 2 (4) : 563-598. doi: 10.3934/eect.2013.2.563

[2]

Serge Nicaise, Cristina Pignotti. Asymptotic analysis of a simple model of fluid-structure interaction. Networks & Heterogeneous Media, 2008, 3 (4) : 787-813. doi: 10.3934/nhm.2008.3.787

[3]

Qiang Du, M. D. Gunzburger, L. S. Hou, J. Lee. Analysis of a linear fluid-structure interaction problem. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 633-650. doi: 10.3934/dcds.2003.9.633

[4]

Oualid Kafi, Nader El Khatib, Jorge Tiago, Adélia Sequeira. Numerical simulations of a 3D fluid-structure interaction model for blood flow in an atherosclerotic artery. Mathematical Biosciences & Engineering, 2017, 14 (1) : 179-193. doi: 10.3934/mbe.2017012

[5]

Martina Bukač, Sunčica Čanić. Longitudinal displacement in viscoelastic arteries: A novel fluid-structure interaction computational model, and experimental validation. Mathematical Biosciences & Engineering, 2013, 10 (2) : 295-318. doi: 10.3934/mbe.2013.10.295

[6]

George Avalos, Thomas J. Clark. A mixed variational formulation for the wellposedness and numerical approximation of a PDE model arising in a 3-D fluid-structure interaction. Evolution Equations & Control Theory, 2014, 3 (4) : 557-578. doi: 10.3934/eect.2014.3.557

[7]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. A stability estimate for fluid structure interaction problem with non-linear beam. Conference Publications, 2009, 2009 (Special) : 424-432. doi: 10.3934/proc.2009.2009.424

[8]

Grégoire Allaire, Alessandro Ferriero. Homogenization and long time asymptotic of a fluid-structure interaction problem. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 199-220. doi: 10.3934/dcdsb.2008.9.199

[9]

Igor Kukavica, Amjad Tuffaha. Solutions to a fluid-structure interaction free boundary problem. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1355-1389. doi: 10.3934/dcds.2012.32.1355

[10]

Linfang Liu, Tomás Caraballo, Xianlong Fu. Exponential stability of an incompressible non-Newtonian fluid with delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4285-4303. doi: 10.3934/dcdsb.2018138

[11]

Andro Mikelić, Giovanna Guidoboni, Sunčica Čanić. Fluid-structure interaction in a pre-stressed tube with thick elastic walls I: the stationary Stokes problem. Networks & Heterogeneous Media, 2007, 2 (3) : 397-423. doi: 10.3934/nhm.2007.2.397

[12]

George Avalos, Roberto Triggiani. Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 817-833. doi: 10.3934/dcds.2008.22.817

[13]

Salim Meddahi, David Mora. Nonconforming mixed finite element approximation of a fluid-structure interaction spectral problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 269-287. doi: 10.3934/dcdss.2016.9.269

[14]

Mehdi Badra, Takéo Takahashi. Feedback boundary stabilization of 2d fluid-structure interaction systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2315-2373. doi: 10.3934/dcds.2017102

[15]

Henry Jacobs, Joris Vankerschaver. Fluid-structure interaction in the Lagrange-Poincaré formalism: The Navier-Stokes and inviscid regimes. Journal of Geometric Mechanics, 2014, 6 (1) : 39-66. doi: 10.3934/jgm.2014.6.39

[16]

Luis Barreira, Claudia Valls. Delay equations and nonuniform exponential stability. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 219-223. doi: 10.3934/dcdss.2008.1.219

[17]

Daniele Boffi, Lucia Gastaldi. Discrete models for fluid-structure interactions: The finite element Immersed Boundary Method. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 89-107. doi: 10.3934/dcdss.2016.9.89

[18]

George Avalos, Roberto Triggiani. Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 417-447. doi: 10.3934/dcdss.2009.2.417

[19]

István Györi, Ferenc Hartung. Exponential stability of a state-dependent delay system. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 773-791. doi: 10.3934/dcds.2007.18.773

[20]

Caterina Calgaro, Meriem Ezzoug, Ezzeddine Zahrouni. Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 429-448. doi: 10.3934/cpaa.2018024

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (69)
  • HTML views (170)
  • Cited by (0)

Other articles
by authors

[Back to Top]