• Previous Article
    Incompressible limit for the compressible flow of liquid crystals in $ L^p$ type critical Besov spaces
  • DCDS Home
  • This Issue
  • Next Article
    Isolated singularities for elliptic equations with hardy operator and source nonlinearity
June  2018, 38(6): 2911-2943. doi: 10.3934/dcds.2018125

Stability of transonic jets with strong rarefaction waves for two-dimensional steady compressible Euler system

1. 

Department of Mathematics, School of Science, Wuhan University of Technology, Wuhan 430070, China

2. 

Department of Mathematics, Center for PDE and Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, China

* Corresponding author: Hairong Yuan

Received  July 2017 Revised  December 2017 Published  April 2018

Fund Project: The research of Min Ding is supported by the Fundamental Research Funds for the Central Universities (WUT: 2016IVA074) and by the National Natural Science Foundation of China under Grant Nos. 11626176 and 11701435. The research of Hairong Yuan is supported by the National Natural Science Foundation of China under Grant No. 11371141, and by Science and Technology Commission of Shanghai Municipality (STCSM) under grant No. 13dz2260400

We study supersonic flow past a convex corner which is surrounded by quiescent gas. When the pressure of the upstream supersonic flow is larger than that of the quiescent gas, there appears a strong rarefaction wave to rarefy the supersonic gas. Meanwhile, a transonic characteristic discontinuity appears to separate the supersonic flow behind the rarefaction wave from the static gas. In this paper, we employ a wave front tracking method to establish structural stability of such a flow pattern under non-smooth perturbations of the upcoming supersonic flow. It is an initial-value/free-boundary problem for the two-dimensional steady non-isentropic compressible Euler system. The main ingredients are careful analysis of wave interactions and construction of suitable Glimm functional, to overcome the difficulty that the strong rarefaction wave has a large total variation.

Citation: Min Ding, Hairong Yuan. Stability of transonic jets with strong rarefaction waves for two-dimensional steady compressible Euler system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2911-2943. doi: 10.3934/dcds.2018125
References:
[1]

D. Amadori, Initial-boundary value problems for nonlinear systems of conservation laws, NoDEA Nonlinear Differential Equations Appl., 4 (1997), 1-42. doi: 10.1007/PL00001406. Google Scholar

[2]

A. Bressan, Hyperbolic Systems of Conservation Laws: The One-Dimensional Cauchy Problem, Oxford Lecture Series in Mathematics and its Applications, 20, Oxford University Press, Oxford, 2000. Google Scholar

[3]

G.-Q. G. ChenJ. Kuang and Y. Zhang, Two-dimensional steady supersonic exothermically reacting Euler flow past Lipschitz bending walls, SIAM J. Math. Anal., 49 (2017), 818-873. doi: 10.1137/16M1075089. Google Scholar

[4]

G. -Q. G. Chen, V. Kukreja and H. Yuan, Stability of transonic characteristic discontinuities in two-dimensional steady compressible Euler flows J. Math. Phys., 54 (2013), 021506, 24 pp. doi: 10.1063/1.4790887. Google Scholar

[5]

G.-Q. G. ChenV. Kukreja and H. Yuan, Well-posedness of transonic characteristic discontinuities in two-dimensional steady compressible Euler flows, Z. Angew. Math. Phys., 64 (2013), 1711-1727. doi: 10.1007/s00033-013-0312-6. Google Scholar

[6]

G.-Q. G. ChenY. Zhang and D. Zhu, Stability of compressible vortex sheets in steady supersonic Euler flows over Lipschitz walls, SIAM J. Math. Anal., 38 (2006/07), 1660-1693. doi: 10.1137/050642976. Google Scholar

[7]

G.-Q. G. ChenY. Zhang and D. Zhu, Existence and stability of supersonic Euler flows past Lipschitz wedges, Arch. Rational Mech. Anal., 181 (2006), 261-310. doi: 10.1007/s00205-005-0412-3. Google Scholar

[8]

R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Applied Mathematical Sciences, Vol. 12, Wiley-Interscience, New York, 1948. Google Scholar

[9]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 4th edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 325, Springer-Verlag, Berlin, 2016. Google Scholar

[10]

M. Ding, Existence and stability of rarefaction wave to 1-D piston problem for the relativistic full Euler equations, J. Differential Equations, 262 (2017), 6068-6108. doi: 10.1016/j.jde.2017.02.028. Google Scholar

[11]

M. Ding, Stability of rarefaction wave to the 1-D piston problem for exothermically reacting Euler equations Calc. Var. Partial Differential Equations, 56(2017), Art. 78, 49 pp. doi: 10.1007/s00526-017-1162-4. Google Scholar

[12]

M. DingJ. Kuang and Y. Zhang, Global stability of rarefaction wave to the 1-D piston problem for the compressible full Euler equations, J. Math. Anal. Appl., 448 (2017), 1228-1264. doi: 10.1016/j.jmaa.2016.11.059. Google Scholar

[13]

M. Ding and Y. Li, Stability and non-relativistic limits of rarefaction wave to the 1-D piston problem for the relativistic Euler equations Z. Angew. Math. Phys. 68 (2017), Art. 43, 32 pp. doi: 10.1007/s00033-017-0787-7. Google Scholar

[14]

J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure. Appl. Math., 18 (1965), 697-715. doi: 10.1002/cpa.3160180408. Google Scholar

[15]

H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, 2nd edition, Applied Mathematical Sciences, 152, Springer-Verlag, Berlin Heidelberg, 2015. Google Scholar

[16]

V. KukrejaH. Yuan and Q. Zhao, Stability of transonic jet with strong shock in two-dimensional steady compressible Euler flows, J. Differential Equations, 258 (2015), 2572-2617. doi: 10.1016/j.jde.2014.12.017. Google Scholar

[17]

L. LiuG. Xu and H. Yuan, Stability of spherically symmetric subsonic flows and transonic shocks under multidimensional perturbations, Adv. Math., 291 (2016), 696-757. doi: 10.1016/j.aim.2016.01.002. Google Scholar

[18]

A. Qu and W. Xiang, Three-Dimensional Steady Supersonic Euler Flow Past a Concave Cornered Wedge with Lower Pressure at the Downstream, Arch Rational Mech. Anal., 228 (2018), 431-476. doi: 10.1007/s00205-017-1197-x. Google Scholar

[19]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2nd edition, Springer-Verlag, New York, 1994. Google Scholar

[20]

Y.-G. Wang and H. Yuan, Weak stability of transonic contact discontinuities in three-dimensional steady non-isentropic compressible Euler flows, Z. Angew. Math. Phys., 66 (2015), 341-388. doi: 10.1007/s00033-014-0404-y. Google Scholar

[21]

Z. Wang and Y. Zhang, Steady supersonic flow past a curved cone, J. Differential Equations, 247 (2009), 1817-1850. doi: 10.1016/j.jde.2009.05.010. Google Scholar

[22]

Y. Zhang, Steady supersonic flow over a bending wall, Nonlinear Anal. Real World Appl., 12 (2011), 167-189. doi: 10.1016/j.nonrwa.2010.06.006. Google Scholar

show all references

References:
[1]

D. Amadori, Initial-boundary value problems for nonlinear systems of conservation laws, NoDEA Nonlinear Differential Equations Appl., 4 (1997), 1-42. doi: 10.1007/PL00001406. Google Scholar

[2]

A. Bressan, Hyperbolic Systems of Conservation Laws: The One-Dimensional Cauchy Problem, Oxford Lecture Series in Mathematics and its Applications, 20, Oxford University Press, Oxford, 2000. Google Scholar

[3]

G.-Q. G. ChenJ. Kuang and Y. Zhang, Two-dimensional steady supersonic exothermically reacting Euler flow past Lipschitz bending walls, SIAM J. Math. Anal., 49 (2017), 818-873. doi: 10.1137/16M1075089. Google Scholar

[4]

G. -Q. G. Chen, V. Kukreja and H. Yuan, Stability of transonic characteristic discontinuities in two-dimensional steady compressible Euler flows J. Math. Phys., 54 (2013), 021506, 24 pp. doi: 10.1063/1.4790887. Google Scholar

[5]

G.-Q. G. ChenV. Kukreja and H. Yuan, Well-posedness of transonic characteristic discontinuities in two-dimensional steady compressible Euler flows, Z. Angew. Math. Phys., 64 (2013), 1711-1727. doi: 10.1007/s00033-013-0312-6. Google Scholar

[6]

G.-Q. G. ChenY. Zhang and D. Zhu, Stability of compressible vortex sheets in steady supersonic Euler flows over Lipschitz walls, SIAM J. Math. Anal., 38 (2006/07), 1660-1693. doi: 10.1137/050642976. Google Scholar

[7]

G.-Q. G. ChenY. Zhang and D. Zhu, Existence and stability of supersonic Euler flows past Lipschitz wedges, Arch. Rational Mech. Anal., 181 (2006), 261-310. doi: 10.1007/s00205-005-0412-3. Google Scholar

[8]

R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Applied Mathematical Sciences, Vol. 12, Wiley-Interscience, New York, 1948. Google Scholar

[9]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 4th edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 325, Springer-Verlag, Berlin, 2016. Google Scholar

[10]

M. Ding, Existence and stability of rarefaction wave to 1-D piston problem for the relativistic full Euler equations, J. Differential Equations, 262 (2017), 6068-6108. doi: 10.1016/j.jde.2017.02.028. Google Scholar

[11]

M. Ding, Stability of rarefaction wave to the 1-D piston problem for exothermically reacting Euler equations Calc. Var. Partial Differential Equations, 56(2017), Art. 78, 49 pp. doi: 10.1007/s00526-017-1162-4. Google Scholar

[12]

M. DingJ. Kuang and Y. Zhang, Global stability of rarefaction wave to the 1-D piston problem for the compressible full Euler equations, J. Math. Anal. Appl., 448 (2017), 1228-1264. doi: 10.1016/j.jmaa.2016.11.059. Google Scholar

[13]

M. Ding and Y. Li, Stability and non-relativistic limits of rarefaction wave to the 1-D piston problem for the relativistic Euler equations Z. Angew. Math. Phys. 68 (2017), Art. 43, 32 pp. doi: 10.1007/s00033-017-0787-7. Google Scholar

[14]

J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure. Appl. Math., 18 (1965), 697-715. doi: 10.1002/cpa.3160180408. Google Scholar

[15]

H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, 2nd edition, Applied Mathematical Sciences, 152, Springer-Verlag, Berlin Heidelberg, 2015. Google Scholar

[16]

V. KukrejaH. Yuan and Q. Zhao, Stability of transonic jet with strong shock in two-dimensional steady compressible Euler flows, J. Differential Equations, 258 (2015), 2572-2617. doi: 10.1016/j.jde.2014.12.017. Google Scholar

[17]

L. LiuG. Xu and H. Yuan, Stability of spherically symmetric subsonic flows and transonic shocks under multidimensional perturbations, Adv. Math., 291 (2016), 696-757. doi: 10.1016/j.aim.2016.01.002. Google Scholar

[18]

A. Qu and W. Xiang, Three-Dimensional Steady Supersonic Euler Flow Past a Concave Cornered Wedge with Lower Pressure at the Downstream, Arch Rational Mech. Anal., 228 (2018), 431-476. doi: 10.1007/s00205-017-1197-x. Google Scholar

[19]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2nd edition, Springer-Verlag, New York, 1994. Google Scholar

[20]

Y.-G. Wang and H. Yuan, Weak stability of transonic contact discontinuities in three-dimensional steady non-isentropic compressible Euler flows, Z. Angew. Math. Phys., 66 (2015), 341-388. doi: 10.1007/s00033-014-0404-y. Google Scholar

[21]

Z. Wang and Y. Zhang, Steady supersonic flow past a curved cone, J. Differential Equations, 247 (2009), 1817-1850. doi: 10.1016/j.jde.2009.05.010. Google Scholar

[22]

Y. Zhang, Steady supersonic flow over a bending wall, Nonlinear Anal. Real World Appl., 12 (2011), 167-189. doi: 10.1016/j.nonrwa.2010.06.006. Google Scholar

Figure 1.  A transonic characteristic discontinuity separating supersonic flow behind the rarefaction wave and the surrounding static gas.
Figure 2.  Reflection on the free-boundary.
[1]

Tung Chang, Gui-Qiang Chen, Shuli Yang. On the 2-D Riemann problem for the compressible Euler equations I. Interaction of shocks and rarefaction waves. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 555-584. doi: 10.3934/dcds.1995.1.555

[2]

Feimin Huang, Yi Wang, Tong Yang. Fluid dynamic limit to the Riemann Solutions of Euler equations: I. Superposition of rarefaction waves and contact discontinuity. Kinetic & Related Models, 2010, 3 (4) : 685-728. doi: 10.3934/krm.2010.3.685

[3]

Jong-Shenq Guo, Hirokazu Ninomiya, Chin-Chin Wu. Existence of a rotating wave pattern in a disk for a wave front interaction model. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1049-1063. doi: 10.3934/cpaa.2013.12.1049

[4]

Stefano Bianchini. Interaction estimates and Glimm functional for general hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (1) : 133-166. doi: 10.3934/dcds.2003.9.133

[5]

Li Fang, Zhenhua Guo. Zero dissipation limit to rarefaction wave with vacuum for a one-dimensional compressible non-Newtonian fluid. Communications on Pure & Applied Analysis, 2017, 16 (1) : 209-242. doi: 10.3934/cpaa.2017010

[6]

Feng Xie. Nonlinear stability of combination of viscous contact wave with rarefaction waves for a 1D radiation hydrodynamics model. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 1075-1100. doi: 10.3934/dcdsb.2012.17.1075

[7]

Bingkang Huang, Lusheng Wang, Qinghua Xiao. Global nonlinear stability of rarefaction waves for compressible Navier-Stokes equations with temperature and density dependent transport coefficients. Kinetic & Related Models, 2016, 9 (3) : 469-514. doi: 10.3934/krm.2016004

[8]

Eun Heui Kim, Charis Tsikkou. Two dimensional Riemann problems for the nonlinear wave system: Rarefaction wave interactions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6257-6289. doi: 10.3934/dcds.2017271

[9]

Renjun Duan, Xiongfeng Yang. Stability of rarefaction wave and boundary layer for outflow problem on the two-fluid Navier-Stokes-Poisson equations. Communications on Pure & Applied Analysis, 2013, 12 (2) : 985-1014. doi: 10.3934/cpaa.2013.12.985

[10]

Lili Fan, Hongxia Liu, Huijiang Zhao, Qingyang Zou. Global stability of stationary waves for damped wave equations. Kinetic & Related Models, 2013, 6 (4) : 729-760. doi: 10.3934/krm.2013.6.729

[11]

Fabio Ancona, Andrea Marson. On the Glimm Functional for general hyperbolic systems. Conference Publications, 2011, 2011 (Special) : 44-53. doi: 10.3934/proc.2011.2011.44

[12]

Gui-Qiang Chen, Jun Chen, Mikhail Feldman. Transonic flows with shocks past curved wedges for the full Euler equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4179-4211. doi: 10.3934/dcds.2016.36.4179

[13]

Tung Chang, Gui-Qiang Chen, Shuli Yang. On the 2-D Riemann problem for the compressible Euler equations II. Interaction of contact discontinuities. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 419-430. doi: 10.3934/dcds.2000.6.419

[14]

Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1907-1926. doi: 10.3934/cpaa.2013.12.1907

[15]

Debora Amadori, Wen Shen. Front tracking approximations for slow erosion. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1481-1502. doi: 10.3934/dcds.2012.32.1481

[16]

Ademir Pastor. On three-wave interaction Schrödinger systems with quadratic nonlinearities: Global well-posedness and standing waves. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2217-2242. doi: 10.3934/cpaa.2019100

[17]

Teng Wang, Yi Wang. Nonlinear stability of planar rarefaction wave to the three-dimensional Boltzmann equation. Kinetic & Related Models, 2019, 12 (3) : 637-679. doi: 10.3934/krm.2019025

[18]

Christian Rohde, Wenjun Wang, Feng Xie. Hyperbolic-hyperbolic relaxation limit for a 1D compressible radiation hydrodynamics model: superposition of rarefaction and contact waves. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2145-2171. doi: 10.3934/cpaa.2013.12.2145

[19]

Wenjun Wang, Lei Yao. Vanishing viscosity limit to rarefaction waves for the full compressible fluid models of Korteweg type. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2331-2350. doi: 10.3934/cpaa.2014.13.2331

[20]

José Raúl Quintero, Juan Carlos Muñoz Grajales. Solitary waves for an internal wave model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5721-5741. doi: 10.3934/dcds.2016051

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (43)
  • HTML views (121)
  • Cited by (0)

Other articles
by authors

[Back to Top]