# American Institute of Mathematical Sciences

April  2018, 38(4): 2029-2046. doi: 10.3934/dcds.2018082

## Global dynamics and bifurcation of planar piecewise smooth quadratic quasi-homogeneous differential systems

 1 School of Mathematical Sciences, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China 2 Center for Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, Maribor, SI-2000 Maribor, Slovenia

Received  March 2017 Revised  August 2017 Published  January 2018

In this paper we research global dynamics and bifurcations of planar piecewise smooth quadratic quasi-homogeneous but non-homogeneous polynomial differential systems. We present sufficient and necessary conditions for the existence of a center in piecewise smooth quadratic quasi-homogeneous systems. Moreover, the center is global and non-isochronous, which cannot appear in smooth quadratic quasi-homogeneous systems. Then the global structures of piecewise smooth quadratic quasi-homogeneous but non-homogeneous systems are obtained. Finally we investigate limit cycle bifurcations of the piecewise quadratic quasi-homogeneous center and give the maximal number of limit cycles bifurcating from periodic orbits of the center by applying the Melnikov method for piecewise smooth near-Hamiltonian systems.

Citation: Yilei Tang. Global dynamics and bifurcation of planar piecewise smooth quadratic quasi-homogeneous differential systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2029-2046. doi: 10.3934/dcds.2018082
##### References:

show all references

##### References:
Existence of closed orbits for system $(I)$
The global phase portraits of system $(I)$
The global phase portraits of system $(III)$
The closed orbit of system $(I)$ and its perturbation
Parameter conditions of Figure 2
 Figure 2 Parameter conditions (1) $b_1>0$, $a_1>0$ and $\tilde{a}_1>0$ (2) $b_1>0$, $a_1>0$ and $\tilde{a}_1<0$ (3) $b_1>0$, $a_1<0$ and $\tilde{a}_1<0$ (4) $b_1>0$, $a_1<0$ and $\tilde{a}_1>0$ (5) $b_1<0$, $a_1>0$ and $\tilde{a}_1>0$ (6) $b_1<0$, $a_1>0$ and $\tilde{a}_1<0$ (7) $b_1<0$, $a_1<0$ and $\tilde{a}_1<0$ (8) $b_1<0$, $a_1<0$ and $\tilde{a}_1>0$
 Figure 2 Parameter conditions (1) $b_1>0$, $a_1>0$ and $\tilde{a}_1>0$ (2) $b_1>0$, $a_1>0$ and $\tilde{a}_1<0$ (3) $b_1>0$, $a_1<0$ and $\tilde{a}_1<0$ (4) $b_1>0$, $a_1<0$ and $\tilde{a}_1>0$ (5) $b_1<0$, $a_1>0$ and $\tilde{a}_1>0$ (6) $b_1<0$, $a_1>0$ and $\tilde{a}_1<0$ (7) $b_1<0$, $a_1<0$ and $\tilde{a}_1<0$ (8) $b_1<0$, $a_1<0$ and $\tilde{a}_1>0$
Parameter conditions of Figure 3
 Figure 3 Parameter conditions (1) $a_{31}<0$, $b_3<0$, $a_{31}\ge 2b_3$, $a_{32}<0$ and $\tilde{a}_{31}>2$ (2) $a_{31}<0$, $b_3<0$, $a_{31}\ge 2b_3$, $a_{32}<0$ and $0<\tilde{a}_{31}\le 2$ (3) $a_{31}<0$, $b_3<0$, $a_{31}\ge 2b_3$, $a_{32}<0$ and $\tilde{a}_{31}<0$ (4) $a_{31}<0$, $b_3<0$, $a_{31}\ge 2b_3$, $a_{32}>0$ and $\tilde{a}_{31}>2$ (5) $a_{31}<0$, $b_3<0$, $a_{31}\ge 2b_3$, $a_{32}>0$ and $0<\tilde{a}_{31}\le 2$ (6) $a_{31}<0$, $b_3<0$, $a_{31}\ge 2b_3$, $a_{32}>0$ and $\tilde{a}_{31}<0$ (7) $a_{31}<0$, $b_3<0$, $a_{31}< 2b_3$, $a_{32}>0$ and $\tilde{a}_{31}>2$ (8) $a_{31}<0$, $b_3<0$, $a_{31}< 2b_3$, $a_{32}>0$ and $0<\tilde{a}_{31}\le 2$ (9) $a_{31}<0$, $b_3<0$, $a_{31}< 2b_3$, $a_{32}>0$ and $\tilde{a}_{31}<0$ (10) $a_{31}<0$, $b_3<0$, $a_{31}< 2b_3$, $a_{32}<0$ and $\tilde{a}_{31}>2$ (11) $a_{31}<0$, $b_3<0$, $a_{31}< 2b_3$, $a_{32}<0$ and $0<\tilde{a}_{31}\le 2$ (12) $a_{31}<0$, $b_3<0$, $a_{31}< 2b_3$, $a_{32}<0$ and $\tilde{a}_{31}<0$ (13) $a_{31}>0$, $b_3>0$, $a_{31}\le 2b_3$, $a_{32}<0$ and $\tilde{a}_{31}>2$ (14) $a_{31}>0$, $b_3>0$, $a_{31}\le 2b_3$, $a_{32}<0$ and $0<\tilde{a}_{31}\le 2$ (15) $a_{31}>0$, $b_3>0$, $a_{31}\le 2b_3$, $a_{32}<0$ and $\tilde{a}_{31}<0$ (16) $a_{31}>0$, $b_3>0$, $a_{31}\le 2b_3$, $a_{32}>0$ and $\tilde{a}_{31}>2$ (17) $a_{31}>0$, $b_3>0$, $a_{31}\le 2b_3$, $a_{32}>0$ and $0<\tilde{a}_{31}\le 2$ (18) $a_{31}>0$, $b_3>0$, $a_{31}\le 2b_3$, $a_{32}>0$ and $\tilde{a}_{31}<0$ (19) $a_{31}>0$, $b_3>0$, $a_{31}> 2b_3$, $a_{32}<0$ and $\tilde{a}_{31}>2$ (20) $a_{31}>0$, $b_3>0$, $a_{31}> 2b_3$, $a_{32}<0$ and $0<\tilde{a}_{31}\le 2$ (21) $a_{31}>0$, $b_3>0$, $a_{31}> 2b_3$, $a_{32}<0$ and $\tilde{a}_{31}<0$ (22) $a_{31}>0$, $b_3>0$, $a_{31}> 2b_3$, $a_{32}>0$ and $\tilde{a}_{31}>2$ (23) $a_{31}>0$, $b_3>0$, $a_{31}> 2b_3$, $a_{32}>0$ and $0<\tilde{a}_{31}\le 2$ (24) $a_{31}>0$, $b_3>0$, $a_{31}> 2b_3$, $a_{32}>0$ and $\tilde{a}_{31}<0$ (25) $a_{31}>0$, $b_3<0$, $a_{32}<0$ and $\tilde{a}_{31}>2$ (26) $a_{31}>0$, $b_3<0$, $a_{32}<0$ and $0<\tilde{a}_{31}\le 2$ (27) $a_{31}>0$, $b_3<0$, $a_{32}<0$ and $\tilde{a}_{31}<0$ (28) $a_{31}>0$, $b_3<0$, $a_{32}>0$ and $\tilde{a}_{31}>2$ (29) $a_{31}>0$, $b_3<0$, $a_{32}>0$ and $0<\tilde{a}_{31}\le 2$ (30) $a_{31}>0$, $b_3<0$, $a_{32}>0$ and $\tilde{a}_{31}<0$ (31) $a_{31}<0$, $b_3>0$, $a_{32}<0$ and $\tilde{a}_{31}>2$ (32) $a_{31}<0$, $b_3>0$, $a_{32}<0$ and $0<\tilde{a}_{31}\le 2$ (33) $a_{31}<0$, $b_3>0$, $a_{32}<0$ and $\tilde{a}_{31}<0$ (34) $a_{31}<0$, $b_3>0$, $a_{32}>0$ and $\tilde{a}_{31}>2$ (35) $a_{31}<0$, $b_3>0$, $a_{32}>0$ and $0<\tilde{a}_{31}\le 2$ (36) $a_{31}<0$, $b_3>0$, $a_{32}>0$ and $\tilde{a}_{31}<0$
 Figure 3 Parameter conditions (1) $a_{31}<0$, $b_3<0$, $a_{31}\ge 2b_3$, $a_{32}<0$ and $\tilde{a}_{31}>2$ (2) $a_{31}<0$, $b_3<0$, $a_{31}\ge 2b_3$, $a_{32}<0$ and $0<\tilde{a}_{31}\le 2$ (3) $a_{31}<0$, $b_3<0$, $a_{31}\ge 2b_3$, $a_{32}<0$ and $\tilde{a}_{31}<0$ (4) $a_{31}<0$, $b_3<0$, $a_{31}\ge 2b_3$, $a_{32}>0$ and $\tilde{a}_{31}>2$ (5) $a_{31}<0$, $b_3<0$, $a_{31}\ge 2b_3$, $a_{32}>0$ and $0<\tilde{a}_{31}\le 2$ (6) $a_{31}<0$, $b_3<0$, $a_{31}\ge 2b_3$, $a_{32}>0$ and $\tilde{a}_{31}<0$ (7) $a_{31}<0$, $b_3<0$, $a_{31}< 2b_3$, $a_{32}>0$ and $\tilde{a}_{31}>2$ (8) $a_{31}<0$, $b_3<0$, $a_{31}< 2b_3$, $a_{32}>0$ and $0<\tilde{a}_{31}\le 2$ (9) $a_{31}<0$, $b_3<0$, $a_{31}< 2b_3$, $a_{32}>0$ and $\tilde{a}_{31}<0$ (10) $a_{31}<0$, $b_3<0$, $a_{31}< 2b_3$, $a_{32}<0$ and $\tilde{a}_{31}>2$ (11) $a_{31}<0$, $b_3<0$, $a_{31}< 2b_3$, $a_{32}<0$ and $0<\tilde{a}_{31}\le 2$ (12) $a_{31}<0$, $b_3<0$, $a_{31}< 2b_3$, $a_{32}<0$ and $\tilde{a}_{31}<0$ (13) $a_{31}>0$, $b_3>0$, $a_{31}\le 2b_3$, $a_{32}<0$ and $\tilde{a}_{31}>2$ (14) $a_{31}>0$, $b_3>0$, $a_{31}\le 2b_3$, $a_{32}<0$ and $0<\tilde{a}_{31}\le 2$ (15) $a_{31}>0$, $b_3>0$, $a_{31}\le 2b_3$, $a_{32}<0$ and $\tilde{a}_{31}<0$ (16) $a_{31}>0$, $b_3>0$, $a_{31}\le 2b_3$, $a_{32}>0$ and $\tilde{a}_{31}>2$ (17) $a_{31}>0$, $b_3>0$, $a_{31}\le 2b_3$, $a_{32}>0$ and $0<\tilde{a}_{31}\le 2$ (18) $a_{31}>0$, $b_3>0$, $a_{31}\le 2b_3$, $a_{32}>0$ and $\tilde{a}_{31}<0$ (19) $a_{31}>0$, $b_3>0$, $a_{31}> 2b_3$, $a_{32}<0$ and $\tilde{a}_{31}>2$ (20) $a_{31}>0$, $b_3>0$, $a_{31}> 2b_3$, $a_{32}<0$ and $0<\tilde{a}_{31}\le 2$ (21) $a_{31}>0$, $b_3>0$, $a_{31}> 2b_3$, $a_{32}<0$ and $\tilde{a}_{31}<0$ (22) $a_{31}>0$, $b_3>0$, $a_{31}> 2b_3$, $a_{32}>0$ and $\tilde{a}_{31}>2$ (23) $a_{31}>0$, $b_3>0$, $a_{31}> 2b_3$, $a_{32}>0$ and $0<\tilde{a}_{31}\le 2$ (24) $a_{31}>0$, $b_3>0$, $a_{31}> 2b_3$, $a_{32}>0$ and $\tilde{a}_{31}<0$ (25) $a_{31}>0$, $b_3<0$, $a_{32}<0$ and $\tilde{a}_{31}>2$ (26) $a_{31}>0$, $b_3<0$, $a_{32}<0$ and $0<\tilde{a}_{31}\le 2$ (27) $a_{31}>0$, $b_3<0$, $a_{32}<0$ and $\tilde{a}_{31}<0$ (28) $a_{31}>0$, $b_3<0$, $a_{32}>0$ and $\tilde{a}_{31}>2$ (29) $a_{31}>0$, $b_3<0$, $a_{32}>0$ and $0<\tilde{a}_{31}\le 2$ (30) $a_{31}>0$, $b_3<0$, $a_{32}>0$ and $\tilde{a}_{31}<0$ (31) $a_{31}<0$, $b_3>0$, $a_{32}<0$ and $\tilde{a}_{31}>2$ (32) $a_{31}<0$, $b_3>0$, $a_{32}<0$ and $0<\tilde{a}_{31}\le 2$ (33) $a_{31}<0$, $b_3>0$, $a_{32}<0$ and $\tilde{a}_{31}<0$ (34) $a_{31}<0$, $b_3>0$, $a_{32}>0$ and $\tilde{a}_{31}>2$ (35) $a_{31}<0$, $b_3>0$, $a_{32}>0$ and $0<\tilde{a}_{31}\le 2$ (36) $a_{31}<0$, $b_3>0$, $a_{32}>0$ and $\tilde{a}_{31}<0$
 [1] Yanqin Xiong, Maoan Han. Planar quasi-homogeneous polynomial systems with a given weight degree. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 4015-4025. doi: 10.3934/dcds.2016.36.4015 [2] Antonio Algaba, Estanislao Gamero, Cristóbal García. The reversibility problem for quasi-homogeneous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3225-3236. doi: 10.3934/dcds.2013.33.3225 [3] Hebai Chen, Jaume Llibre, Yilei Tang. Centers of discontinuous piecewise smooth quasi–homogeneous polynomial differential systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6495-6509. doi: 10.3934/dcdsb.2019150 [4] Hebai Chen, Xingwu Chen, Jianhua Xie. Global phase portrait of a degenerate Bogdanov-Takens system with symmetry. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1273-1293. doi: 10.3934/dcdsb.2017062 [5] Yilei Tang, Long Wang, Xiang Zhang. Center of planar quintic quasi--homogeneous polynomial differential systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2177-2191. doi: 10.3934/dcds.2015.35.2177 [6] Jackson Itikawa, Jaume Llibre. Global phase portraits of uniform isochronous centers with quartic homogeneous polynomial nonlinearities. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 121-131. doi: 10.3934/dcdsb.2016.21.121 [7] Jaume Giné, Maite Grau, Jaume Llibre. Polynomial and rational first integrals for planar quasi--homogeneous polynomial differential systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4531-4547. doi: 10.3934/dcds.2013.33.4531 [8] Kazuyuki Yagasaki. Application of the subharmonic Melnikov method to piecewise-smooth systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2189-2209. doi: 10.3934/dcds.2013.33.2189 [9] Antonio Garijo, Armengol Gasull, Xavier Jarque. Local and global phase portrait of equation $\dot z=f(z)$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 309-329. doi: 10.3934/dcds.2007.17.309 [10] Fengqi Yi, Hua Zhang, Alhaji Cherif, Wenying Zhang. Spatiotemporal patterns of a homogeneous diffusive system modeling hair growth: Global asymptotic behavior and multiple bifurcation analysis. Communications on Pure & Applied Analysis, 2014, 13 (1) : 347-369. doi: 10.3934/cpaa.2014.13.347 [11] Miguel Ângelo De Sousa Mendes. Quasi-invariant attractors of piecewise isometric systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 323-338. doi: 10.3934/dcds.2003.9.323 [12] Jaume Llibre, Y. Paulina Martínez, Claudio Vidal. Phase portraits of linear type centers of polynomial Hamiltonian systems with Hamiltonian function of degree 5 of the form $H = H_1(x)+H_2(y)$. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 75-113. doi: 10.3934/dcds.2019004 [13] Yulin Zhao, Siming Zhu. Higher order Melnikov function for a quartic hamiltonian with cuspidal loop. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 995-1018. doi: 10.3934/dcds.2002.8.995 [14] Lora Billings, Erik M. Bollt, David Morgan, Ira B. Schwartz. Stochastic global bifurcation in perturbed Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 123-132. doi: 10.3934/proc.2003.2003.123 [15] M. R. S. Kulenović, Orlando Merino. Global bifurcation for discrete competitive systems in the plane. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 133-149. doi: 10.3934/dcdsb.2009.12.133 [16] S. Secchi, C. A. Stuart. Global bifurcation of homoclinic solutions of Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1493-1518. doi: 10.3934/dcds.2003.9.1493 [17] Yasuhito Miyamoto. Global bifurcation and stable two-phase separation for a phase field model in a disk. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 791-806. doi: 10.3934/dcds.2011.30.791 [18] Qiaoyi Hu, Zhijun Qiao. Analyticity, Gevrey regularity and unique continuation for an integrable multi-component peakon system with an arbitrary polynomial function. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6975-7000. doi: 10.3934/dcds.2016103 [19] Yurong Li, Zhengdong Du. Applying battelli-fečkan's method to transversal heteroclinic bifurcation in piecewise smooth systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6025-6052. doi: 10.3934/dcdsb.2019119 [20] Qi Wang. Global solutions of a Keller--Segel system with saturated logarithmic sensitivity function. Communications on Pure & Applied Analysis, 2015, 14 (2) : 383-396. doi: 10.3934/cpaa.2015.14.383

2018 Impact Factor: 1.143