# American Institute of Mathematical Sciences

• Previous Article
Mean-square almost automorphic solutions for stochastic differential equations with hyperbolicity
• DCDS Home
• This Issue
• Next Article
Spectral asymptotics of one-dimensional fractal Laplacians in the absence of second-order identities
April  2018, 38(4): 1889-1933. doi: 10.3934/dcds.2018077

## Non-autonomous Schrödinger-Poisson system in $\mathbb{R}^{3}$

 1 School of Mathematics and Statistics, Shandong University of Technology Zibo 255049, China 2 School of Mathematical Sciences, Qufu Normal University, Qufu 273165, China 3 Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung 811, Taiwan 4 School of Mathematical and Statistical Sciences, University of Texas-Rio Grande Valley, Edinburg, Texas 78539, USA

* Corresponding author

Received  November 2016 Revised  October 2017 Published  January 2018

We study the existence of positive solutions for the non-autonomous Schrödinger-Poisson system:
 $\left\{ {\begin{array}{*{20}{l}} { - \Delta u + u + \lambda K\left( x \right)\phi u = a\left( x \right){{\left| u \right|}^{p - 2}}u}&{{\text{in }}{\mathbb{R}^3},} \\ { - \Delta \phi = K\left( x \right){u^2}}&{{\text{in }}{\mathbb{R}^3},} \end{array}} \right.$
where
 $\lambda >0$
,
 $2 < p \le 4$
and both
 $K\left( x\right)$
and
 $a\left( x\right)$
are nonnegative functions in
 $\mathbb{R}^{3}$
, which satisfy the given conditions, but not require any symmetry property. Assuming that
 $% \lim_{\left\vert x\right\vert \rightarrow \infty }K\left( x\right) = K_{\infty }\geq 0$
and
 $\lim_{\left\vert x\right\vert \rightarrow \infty }a\left( x\right) = a_{\infty }>0$
, we explore the existence of positive solutions, depending on the parameters
 $\lambda$
and
 $p$
. More importantly, we establish the existence of ground state solutions in the case of
 $3.18 \approx \frac{{1 + \sqrt {73} }}{3} < P \le 4$
.
Citation: Juntao Sun, Tsung-Fang Wu, Zhaosheng Feng. Non-autonomous Schrödinger-Poisson system in $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1889-1933. doi: 10.3934/dcds.2018077
##### References:
 [1] A. Ambrosetti, On the Schrödinger-Poisson systems, Milan J. Math., 76 (2008), 257-274. doi: 10.1007/s00032-008-0094-z. Google Scholar [2] A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 10 (2008), 39-404. doi: 10.1142/S021919970800282X. Google Scholar [3] A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108. doi: 10.1016/j.jmaa.2008.03.057. Google Scholar [4] V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283-293. doi: 10.12775/TMNA.1998.019. Google Scholar [5] P. A. Binding, P. Drábek and Y. X. Huang, On Neumann boundary value problems for some quasilinear elliptic equations, Electron. J. Differential Equations, 5 (1997), 1-11. Google Scholar [6] H. Brézis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer Math. Soc., 88 (1983), 486-490. Google Scholar [7] K. J. Brown and T. F. Wu, A fibrering map approach to a semilinear elliptic boundary value problem, Electron. J. Differential Equations, 69 (2007), 1-9. Google Scholar [8] K. J. Brown and T. F. Wu, A fibering map approach to a potential operator equation and its applications, Differential Integral Equations, 22 (2009), 1097-1114. Google Scholar [9] K. J. Brown and Y. Zhang, The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function, J. Differential Equations, 193 (2003), 481-499. doi: 10.1016/S0022-0396(03)00121-9. Google Scholar [10] G. Cerami and G. Vaira, Positive solutions for some non autonomous Schrödinger-Poisson Systems, J. Differential Equations, 248 (2010), 521-543. doi: 10.1016/j.jde.2009.06.017. Google Scholar [11] C. Y. Chen, Y. C. Kuo and T. F. Wu, Existence and multiplicity of positive solutions for the nonlinear Schrödinger-Poisson equations, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 745-764. doi: 10.1017/S0308210511000692. Google Scholar [12] G. M. Coclite and V. Georgiev, Solitary waves for Maxwell-Schrödinger equations, Electron. J. Differential Equations, 94 (2004), 1-31. Google Scholar [13] T. D'Aprile and D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 4 (2004), 307-322. Google Scholar [14] P. Drábek and S. I. Pohozaev, Positive solutions for the $p$ -Laplacian: Application of the fibering method, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 703-726. doi: 10.1017/S0308210500023787. Google Scholar [15] I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-353. doi: 10.1016/0022-247X(74)90025-0. Google Scholar [16] I. Ianni and G. Vaira, On concentration of positive bound states for the Schrödinger-Poisson problem with potentials, Adv. Nonlinear Stud., 8 (2008), 573-595. Google Scholar [17] I. Ianni and G. Vaira, Non-radial sign-changing solutions for the Schrödinger-Poisson problem in the semiclassical limit, Nonlinear Differ. Equ. Appl., 22 (2015), 741-776. doi: 10.1007/s00030-014-0303-0. Google Scholar [18] M. K. Kwong, Uniqueness of positive solution of $Δ u-u+u^{p}=0$ in $\mathbb{R}^{N}$, Arch. Ration. Mech. Anal., 105 (1989), 243-266. Google Scholar [19] P. L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case Ⅰ, Ann. Inst. H. Poincar é Anal. Non Linéaire, 1 (1984), 109-145. doi: 10.1016/S0294-1449(16)30428-0. Google Scholar [20] P. L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case Ⅱ, Ann. Inst. H. Poincar é Anal. Non Linéaire, 1 (1984), 223-283. doi: 10.1016/S0294-1449(16)30422-X. Google Scholar [21] A. Mao, L. Yang, A. Qian and S. Luan, Existence and concentration of solutions of Schrödinger-Poisson system, Applied Mathematics Letters, 68 (2017), 8-12. doi: 10.1016/j.aml.2016.12.014. Google Scholar [22] Z. Nehari, On a class of nonlinear second-order differential equations, Trans. Amer. Math. Soc., 95 (1960), 101-123. doi: 10.1090/S0002-9947-1960-0111898-8. Google Scholar [23] W. M. Ni and I. Takagi, On the shape of least energy solution to a Neumann problem, Comm. Pure Appl. Math., 44 (1991), 819-851. doi: 10.1002/cpa.3160440705. Google Scholar [24] D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674. doi: 10.1016/j.jfa.2006.04.005. Google Scholar [25] D. Ruiz, On the Schrödinger-Poisson-Slater system: Behavior of minimizers, radial and nonradial cases, Arch. Ration Mech. Anal., 198 (2010), 349-368. doi: 10.1007/s00205-010-0299-5. Google Scholar [26] O. Sánchez and J. Soler, Long-time dynamics of the Schrödinger-Poisson-Slater system, J. Statist. Phys., 114 (2004), 179-204. doi: 10.1023/B:JOSS.0000003109.97208.53. Google Scholar [27] J. Sun, H. Chen and J. J. Nieto, On ground state solutions for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations, 252 (2012), 3365-3380. doi: 10.1016/j.jde.2011.12.007. Google Scholar [28] J. Sun and T. F. Wu, On the nonlinear Schrödinger-Poisson systems with sign-changing potential, Z. Angew. Math. Phys., 66 (2015), 1649-1669. doi: 10.1007/s00033-015-0494-1. Google Scholar [29] J. Sun, T. F. Wu and Z. Feng, Multiplicity of positive solutions for a nonlinear Schrödinger-Poisson system, J. Differential Equations, 260 (2016), 586-627. doi: 10.1016/j.jde.2015.09.002. Google Scholar [30] G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 9 (1992), 281-304. doi: 10.1016/S0294-1449(16)30238-4. Google Scholar [31] G. Vaira, Ground states for Schrödinger-Poisson type systems, Ric. Mat., 60 (2011), 263-297. doi: 10.1007/s11587-011-0109-x. Google Scholar [32] Z. Wang and H. Zhou, Positive solution for a nonlinear stationary Schrödinger-Poisson system in $\mathbb{R}^{3}$, Discrete Contin. Dyn. Syst., 18 (2007), 809-816. doi: 10.3934/dcds.2007.18.809. Google Scholar [33] L. Zhao, H. Liu and F. Zhao, Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential, J. Differential Equations, 255 (2013), 1-23. doi: 10.1016/j.jde.2013.03.005. Google Scholar [34] L. Zhao and F. Zhao, On the existence of solutions for the Schr ödinger-Poisson equations, J. Math. Anal. Appl., 346 (2008), 155-169. doi: 10.1016/j.jmaa.2008.04.053. Google Scholar

show all references

##### References:
 [1] A. Ambrosetti, On the Schrödinger-Poisson systems, Milan J. Math., 76 (2008), 257-274. doi: 10.1007/s00032-008-0094-z. Google Scholar [2] A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 10 (2008), 39-404. doi: 10.1142/S021919970800282X. Google Scholar [3] A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108. doi: 10.1016/j.jmaa.2008.03.057. Google Scholar [4] V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283-293. doi: 10.12775/TMNA.1998.019. Google Scholar [5] P. A. Binding, P. Drábek and Y. X. Huang, On Neumann boundary value problems for some quasilinear elliptic equations, Electron. J. Differential Equations, 5 (1997), 1-11. Google Scholar [6] H. Brézis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer Math. Soc., 88 (1983), 486-490. Google Scholar [7] K. J. Brown and T. F. Wu, A fibrering map approach to a semilinear elliptic boundary value problem, Electron. J. Differential Equations, 69 (2007), 1-9. Google Scholar [8] K. J. Brown and T. F. Wu, A fibering map approach to a potential operator equation and its applications, Differential Integral Equations, 22 (2009), 1097-1114. Google Scholar [9] K. J. Brown and Y. Zhang, The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function, J. Differential Equations, 193 (2003), 481-499. doi: 10.1016/S0022-0396(03)00121-9. Google Scholar [10] G. Cerami and G. Vaira, Positive solutions for some non autonomous Schrödinger-Poisson Systems, J. Differential Equations, 248 (2010), 521-543. doi: 10.1016/j.jde.2009.06.017. Google Scholar [11] C. Y. Chen, Y. C. Kuo and T. F. Wu, Existence and multiplicity of positive solutions for the nonlinear Schrödinger-Poisson equations, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 745-764. doi: 10.1017/S0308210511000692. Google Scholar [12] G. M. Coclite and V. Georgiev, Solitary waves for Maxwell-Schrödinger equations, Electron. J. Differential Equations, 94 (2004), 1-31. Google Scholar [13] T. D'Aprile and D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 4 (2004), 307-322. Google Scholar [14] P. Drábek and S. I. Pohozaev, Positive solutions for the $p$ -Laplacian: Application of the fibering method, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 703-726. doi: 10.1017/S0308210500023787. Google Scholar [15] I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-353. doi: 10.1016/0022-247X(74)90025-0. Google Scholar [16] I. Ianni and G. Vaira, On concentration of positive bound states for the Schrödinger-Poisson problem with potentials, Adv. Nonlinear Stud., 8 (2008), 573-595. Google Scholar [17] I. Ianni and G. Vaira, Non-radial sign-changing solutions for the Schrödinger-Poisson problem in the semiclassical limit, Nonlinear Differ. Equ. Appl., 22 (2015), 741-776. doi: 10.1007/s00030-014-0303-0. Google Scholar [18] M. K. Kwong, Uniqueness of positive solution of $Δ u-u+u^{p}=0$ in $\mathbb{R}^{N}$, Arch. Ration. Mech. Anal., 105 (1989), 243-266. Google Scholar [19] P. L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case Ⅰ, Ann. Inst. H. Poincar é Anal. Non Linéaire, 1 (1984), 109-145. doi: 10.1016/S0294-1449(16)30428-0. Google Scholar [20] P. L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case Ⅱ, Ann. Inst. H. Poincar é Anal. Non Linéaire, 1 (1984), 223-283. doi: 10.1016/S0294-1449(16)30422-X. Google Scholar [21] A. Mao, L. Yang, A. Qian and S. Luan, Existence and concentration of solutions of Schrödinger-Poisson system, Applied Mathematics Letters, 68 (2017), 8-12. doi: 10.1016/j.aml.2016.12.014. Google Scholar [22] Z. Nehari, On a class of nonlinear second-order differential equations, Trans. Amer. Math. Soc., 95 (1960), 101-123. doi: 10.1090/S0002-9947-1960-0111898-8. Google Scholar [23] W. M. Ni and I. Takagi, On the shape of least energy solution to a Neumann problem, Comm. Pure Appl. Math., 44 (1991), 819-851. doi: 10.1002/cpa.3160440705. Google Scholar [24] D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674. doi: 10.1016/j.jfa.2006.04.005. Google Scholar [25] D. Ruiz, On the Schrödinger-Poisson-Slater system: Behavior of minimizers, radial and nonradial cases, Arch. Ration Mech. Anal., 198 (2010), 349-368. doi: 10.1007/s00205-010-0299-5. Google Scholar [26] O. Sánchez and J. Soler, Long-time dynamics of the Schrödinger-Poisson-Slater system, J. Statist. Phys., 114 (2004), 179-204. doi: 10.1023/B:JOSS.0000003109.97208.53. Google Scholar [27] J. Sun, H. Chen and J. J. Nieto, On ground state solutions for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations, 252 (2012), 3365-3380. doi: 10.1016/j.jde.2011.12.007. Google Scholar [28] J. Sun and T. F. Wu, On the nonlinear Schrödinger-Poisson systems with sign-changing potential, Z. Angew. Math. Phys., 66 (2015), 1649-1669. doi: 10.1007/s00033-015-0494-1. Google Scholar [29] J. Sun, T. F. Wu and Z. Feng, Multiplicity of positive solutions for a nonlinear Schrödinger-Poisson system, J. Differential Equations, 260 (2016), 586-627. doi: 10.1016/j.jde.2015.09.002. Google Scholar [30] G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 9 (1992), 281-304. doi: 10.1016/S0294-1449(16)30238-4. Google Scholar [31] G. Vaira, Ground states for Schrödinger-Poisson type systems, Ric. Mat., 60 (2011), 263-297. doi: 10.1007/s11587-011-0109-x. Google Scholar [32] Z. Wang and H. Zhou, Positive solution for a nonlinear stationary Schrödinger-Poisson system in $\mathbb{R}^{3}$, Discrete Contin. Dyn. Syst., 18 (2007), 809-816. doi: 10.3934/dcds.2007.18.809. Google Scholar [33] L. Zhao, H. Liu and F. Zhao, Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential, J. Differential Equations, 255 (2013), 1-23. doi: 10.1016/j.jde.2013.03.005. Google Scholar [34] L. Zhao and F. Zhao, On the existence of solutions for the Schr ödinger-Poisson equations, J. Math. Anal. Appl., 346 (2008), 155-169. doi: 10.1016/j.jmaa.2008.04.053. Google Scholar
 [1] Sitong Chen, Xianhua Tang. Existence of ground state solutions for the planar axially symmetric Schrödinger-Poisson system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4685-4702. doi: 10.3934/dcdsb.2018329 [2] Sitong Chen, Junping Shi, Xianhua Tang. Ground state solutions of Nehari-Pohozaev type for the planar Schrödinger-Poisson system with general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5867-5889. doi: 10.3934/dcds.2019257 [3] Zhengping Wang, Huan-Song Zhou. Positive solution for a nonlinear stationary Schrödinger-Poisson system in $R^3$. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 809-816. doi: 10.3934/dcds.2007.18.809 [4] Xu Zhang, Shiwang Ma, Qilin Xie. Bound state solutions of Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 605-625. doi: 10.3934/dcds.2017025 [5] Chunhua Wang, Jing Yang. Positive solutions for a nonlinear Schrödinger-Poisson system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5461-5504. doi: 10.3934/dcds.2018241 [6] Xianhua Tang, Sitong Chen. Ground state solutions of Nehari-Pohozaev type for Schrödinger-Poisson problems with general potentials. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4973-5002. doi: 10.3934/dcds.2017214 [7] Yong-Yong Li, Yan-Fang Xue, Chun-Lei Tang. Ground state solutions for asymptotically periodic modified Schr$\ddot{\mbox{o}}$dinger-Poisson system involving critical exponent. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2299-2324. doi: 10.3934/cpaa.2019104 [8] Zhanping Liang, Yuanmin Song, Fuyi Li. Positive ground state solutions of a quadratically coupled schrödinger system. Communications on Pure & Applied Analysis, 2017, 16 (3) : 999-1012. doi: 10.3934/cpaa.2017048 [9] Yi He, Lu Lu, Wei Shuai. Concentrating ground-state solutions for a class of Schödinger-Poisson equations in $\mathbb{R}^3$ involving critical Sobolev exponents. Communications on Pure & Applied Analysis, 2016, 15 (1) : 103-125. doi: 10.3934/cpaa.2016.15.103 [10] Lun Guo, Wentao Huang, Huifang Jia. Ground state solutions for the fractional Schrödinger-Poisson systems involving critical growth in $\mathbb{R} ^{3}$. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1663-1693. doi: 10.3934/cpaa.2019079 [11] Claudianor O. Alves, Minbo Yang. Existence of positive multi-bump solutions for a Schrödinger-Poisson system in $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5881-5910. doi: 10.3934/dcds.2016058 [12] Yongpeng Chen, Yuxia Guo, Zhongwei Tang. Concentration of ground state solutions for quasilinear Schrödinger systems with critical exponents. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2693-2715. doi: 10.3934/cpaa.2019120 [13] Zhi Chen, Xianhua Tang, Ning Zhang, Jian Zhang. Standing waves for Schrödinger-Poisson system with general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 6103-6129. doi: 10.3934/dcds.2019266 [14] Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991 [15] Miao-Miao Li, Chun-Lei Tang. Multiple positive solutions for Schrödinger-Poisson system in $\mathbb{R}^{3}$ involving concave-convex nonlinearities with critical exponent. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1587-1602. doi: 10.3934/cpaa.2017076 [16] Antonio Azzollini, Pietro d’Avenia, Valeria Luisi. Generalized Schrödinger-Poisson type systems. Communications on Pure & Applied Analysis, 2013, 12 (2) : 867-879. doi: 10.3934/cpaa.2013.12.867 [17] Dengfeng Lü. Positive solutions for Kirchhoff-Schrödinger-Poisson systems with general nonlinearity. Communications on Pure & Applied Analysis, 2018, 17 (2) : 605-626. doi: 10.3934/cpaa.2018033 [18] Mingzheng Sun, Jiabao Su, Leiga Zhao. Infinitely many solutions for a Schrödinger-Poisson system with concave and convex nonlinearities. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 427-440. doi: 10.3934/dcds.2015.35.427 [19] Margherita Nolasco. Breathing modes for the Schrödinger-Poisson system with a multiple--well external potential. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1411-1419. doi: 10.3934/cpaa.2010.9.1411 [20] Qiangchang Ju, Fucai Li, Hailiang Li. Asymptotic limit of nonlinear Schrödinger-Poisson system with general initial data. Kinetic & Related Models, 2011, 4 (3) : 767-783. doi: 10.3934/krm.2011.4.767

2018 Impact Factor: 1.143