# American Institute of Mathematical Sciences

March  2018, 38(3): 1243-1268. doi: 10.3934/dcds.2018051

## A convergent Crank-Nicolson Galerkin scheme for the Benjamin-Ono equation

 Department of Mathematical Sciences, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway

Received  March 2017 Revised  May 2017 Published  December 2017

In this paper we prove the convergence of a Crank-Nicolson type Galerkin finite element scheme for the initial value problem associated to the Benjamin-Ono equation. The proof is based on a recent result for a similar discrete scheme for the Korteweg-de Vries equation and utilizes a local smoothing effect to bound the $H^{1/2}$-norm of the approximations locally. This enables us to show that the scheme converges strongly in $L^{2}(0,T;L^{2}_{\text{loc}}(\mathbb{R}))$ to a weak solution of the equation for initial data in $L^{2}(\mathbb{R})$ and some $T > 0$. Finally we illustrate the method with some numerical examples.

Citation: Sondre Tesdal Galtung. A convergent Crank-Nicolson Galerkin scheme for the Benjamin-Ono equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1243-1268. doi: 10.3934/dcds.2018051
##### References:

show all references

##### References:
Numerical approximation for $N = 256$ and exact solution for $t = 0$, $90$ and $180$, respectively positioned from left to right in the plot, for initial data $u_{s2}$
Relative $L^{2}$-error, $I_1$, $I_2$ and $I_3$ at $t = 90$ and $t = 180$ for initial data $u_{s2}$
 t N E rateE I1 I2 I3 90 128 0.01844 -1.451.580.681.160.08 3.79×l0-5 -7.05×l0-4 5.86×l0-3 256 0.05021 -6.61×l0-6 -3.85×l0-3 1.65×l0-2 512 0.01678 -6.64×l0-6 -9.96×l0-4 4.70×l0-3 1024 0.01044 -4.64×l0-6 3.62×l0-4 -1.57×l0-3 2048 0.00467 -3.25×l0-6 4.16×l0-5 -5.71×l0-6 4096 0.00442 -2.29×l0-6 4.12×l0-6 2.07×l0-4 180 128 0.11959 -1.321.750.742.350.89 1.57×l0-4 -6.45×10-4 -1.56×l0-2 256 0.29755 2.48×l0-6 -7.80×l0-3 3.32×l0-2 512 0.08869 -3.76×l0-6 -2.42×l0-3 1.12×l0-2 1024 0.05295 -2.69×10-6 9.22×l0-4 -4.11×10-3 2048 0.01040 -1.82×10-6 1.16×10-4 -4.74×10-4 4096 0.00561 -1.26×l0-6 1.46×10-5 -1.67×l0-5
 t N E rateE I1 I2 I3 90 128 0.01844 -1.451.580.681.160.08 3.79×l0-5 -7.05×l0-4 5.86×l0-3 256 0.05021 -6.61×l0-6 -3.85×l0-3 1.65×l0-2 512 0.01678 -6.64×l0-6 -9.96×l0-4 4.70×l0-3 1024 0.01044 -4.64×l0-6 3.62×l0-4 -1.57×l0-3 2048 0.00467 -3.25×l0-6 4.16×l0-5 -5.71×l0-6 4096 0.00442 -2.29×l0-6 4.12×l0-6 2.07×l0-4 180 128 0.11959 -1.321.750.742.350.89 1.57×l0-4 -6.45×10-4 -1.56×l0-2 256 0.29755 2.48×l0-6 -7.80×l0-3 3.32×l0-2 512 0.08869 -3.76×l0-6 -2.42×l0-3 1.12×l0-2 1024 0.05295 -2.69×10-6 9.22×l0-4 -4.11×10-3 2048 0.01040 -1.82×10-6 1.16×10-4 -4.74×10-4 4096 0.00561 -1.26×l0-6 1.46×10-5 -1.67×l0-5
 [1] Dongho Kim, Eun-Jae Park. Adaptive Crank-Nicolson methods with dynamic finite-element spaces for parabolic problems. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 873-886. doi: 10.3934/dcdsb.2008.10.873 [2] Yingwen Guo, Yinnian He. Fully discrete finite element method based on second-order Crank-Nicolson/Adams-Bashforth scheme for the equations of motion of Oldroyd fluids of order one. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2583-2609. doi: 10.3934/dcdsb.2015.20.2583 [3] Dongfeng Yan. KAM Tori for generalized Benjamin-Ono equation. Communications on Pure & Applied Analysis, 2015, 14 (3) : 941-957. doi: 10.3934/cpaa.2015.14.941 [4] Jerry Bona, H. Kalisch. Singularity formation in the generalized Benjamin-Ono equation. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 27-45. doi: 10.3934/dcds.2004.11.27 [5] Amin Esfahani, Steve Levandosky. Solitary waves of the rotation-generalized Benjamin-Ono equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 663-700. doi: 10.3934/dcds.2013.33.663 [6] Nakao Hayashi, Pavel Naumkin. On the reduction of the modified Benjamin-Ono equation to the cubic derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 237-255. doi: 10.3934/dcds.2002.8.237 [7] Kenta Ohi, Tatsuo Iguchi. A two-phase problem for capillary-gravity waves and the Benjamin-Ono equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1205-1240. doi: 10.3934/dcds.2009.23.1205 [8] Lufang Mi, Kangkang Zhang. Invariant Tori for Benjamin-Ono Equation with Unbounded quasi-periodically forced Perturbation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 689-707. doi: 10.3934/dcds.2014.34.689 [9] G. Fonseca, G. Rodríguez-Blanco, W. Sandoval. Well-posedness and ill-posedness results for the regularized Benjamin-Ono equation in weighted Sobolev spaces. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1327-1341. doi: 10.3934/cpaa.2015.14.1327 [10] Alan Compelli, Rossen Ivanov. Benjamin-Ono model of an internal wave under a flat surface. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4519-4532. doi: 10.3934/dcds.2019185 [11] Binjie Li, Xiaoping Xie, Shiquan Zhang. New convergence analysis for assumed stress hybrid quadrilateral finite element method. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2831-2856. doi: 10.3934/dcdsb.2017153 [12] Luc Molinet, Francis Ribaud. Well-posedness in $H^1$ for generalized Benjamin-Ono equations on the circle. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1295-1311. doi: 10.3934/dcds.2009.23.1295 [13] Eddye Bustamante, José Jiménez Urrea, Jorge Mejía. The Cauchy problem for a family of two-dimensional fractional Benjamin-Ono equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1177-1203. doi: 10.3934/cpaa.2019057 [14] Caterina Calgaro, Meriem Ezzoug, Ezzeddine Zahrouni. Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 429-448. doi: 10.3934/cpaa.2018024 [15] Jerry L. Bona, Laihan Luo. Large-time asymptotics of the generalized Benjamin-Ono-Burgers equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 15-50. doi: 10.3934/dcdss.2011.4.15 [16] Alexander Zlotnik. The Numerov-Crank-Nicolson scheme on a non-uniform mesh for the time-dependent Schrödinger equation on the half-axis. Kinetic & Related Models, 2015, 8 (3) : 587-613. doi: 10.3934/krm.2015.8.587 [17] Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic & Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639 [18] Xufeng Xiao, Xinlong Feng, Jinyun Yuan. The stabilized semi-implicit finite element method for the surface Allen-Cahn equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2857-2877. doi: 10.3934/dcdsb.2017154 [19] Runchang Lin, Huiqing Zhu. A discontinuous Galerkin least-squares finite element method for solving Fisher's equation. Conference Publications, 2013, 2013 (special) : 489-497. doi: 10.3934/proc.2013.2013.489 [20] Cornel M. Murea, H. G. E. Hentschel. A finite element method for growth in biological development. Mathematical Biosciences & Engineering, 2007, 4 (2) : 339-353. doi: 10.3934/mbe.2007.4.339

2018 Impact Factor: 1.143