# American Institute of Mathematical Sciences

January  2018, 38(1): 63-74. doi: 10.3934/dcds.2018003

## Surgery on Herman rings of the standard Blaschke family

 Northwest University, School of Mathematics, Xi'an Shaanxi 710127, China

Received  January 2016 Revised  August 2017 Published  September 2017

Fund Project: The author is supported by NSFC (grant No. 11426177,11301417) and NSF of Northwest University (grant No. NC14035)

Let
 $B_{\alpha ,a}$
be the Blaschke product of the following form:
 ${B_{\alpha ,a}}(z) = {e^{2\pi {\rm{\mathbf{i}}}\alpha }}{z^{d + 1}}{(\frac{{z - a}}{{1 - az}})^d}.$
If
 $B_{\alpha ,a}|_{S^1}$
is analytically linearizable, then there is a Herman ring admitting the unit circle as an invariant curve in the dynamical plane of
 $B_{\alpha ,a}$
. Given an irrational number
 $θ$
, the parameters
 $(\alpha ,a)$
such that
 $B_{\alpha ,a}|_{S^1}$
has rotation number
 $θ$
form a curve
 $T_d(θ)$
in the parameter plane. Using quasiconformal surgery, we prove that if
 $θ$
is of Brjuno type, the curve can be parameterized real analytically by the modulus of the Herman ring, from
 $a=M(θ)$
up to
 $∞$
with
 $M(θ)≥q 2d+1$
, for which the Herman ring vanishes.Moreover, we can show that for a certain set of irrational numbers
 $θ ∈ \mathcal {B}\setminus\mathcal {H}$
, the number
 $M(θ)$
is strictly greater than
 $2d+1$
and the boundary of the Herman rings consist of two quasicircles not containing any critical point.
Citation: Haifeng Chu. Surgery on Herman rings of the standard Blaschke family. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 63-74. doi: 10.3934/dcds.2018003
##### References:
 [1] L. Ahlfors, Lectures on Quasiconformal Mappings 2$^{nd}$ edition, University Lecture Series, 38 2006. doi: 10.1090/ulect/038. Google Scholar [2] V. Arnold, Small denominators I: On the mapping of a circle into itself, Nauk. Math., Series, 25 (1961), 21-96. Google Scholar [3] H. F. Chu, On the Blaschke circle diffeomorphisms, Proceedings of the American Mathematical Society, 143 (2015), 1169-1182. doi: 10.1090/S0002-9939-2014-12359-8. Google Scholar [4] N. Fagella and L. Geyer, Surgery on Herman rings of the complex standard family, Ergodic Theory and Dynamical Systems, 23 (2003), 493-508. doi: 10.1017/S0143385702001323. Google Scholar [5] L. Geyer, Siegel disks, Herman rings and Arnold family, Trans. Amer. Math. Soc., 353 (2001), 3661-3683. doi: 10.1090/S0002-9947-01-02662-9. Google Scholar [6] C. Henriksen, Holomorphic Dynamics and Herman Rings Master's thesis, Technical University of Denmark, 1997.Google Scholar [7] M. Herman, Sur les conjugaison différentiable des difféomorphismes du cercle á des rotations, Publ. Math. IHES., 49 (1979), 5-233. Google Scholar [8] M. Herman, Conjugaison quasi-symmétrique des difféomorphismes du cercle á des rotations et applications aux disques singuliers de siegel I, unpublished manuscript.Google Scholar [9] O. Lehto and K. Virtanen, Quasiconformal Mappings in the Plane Springer-Verlag, 1973. Google Scholar [10] W. de Melo and S. van Strien, One-Dimensional Dynamics Springer-Verlag, 1993. doi: 10.1007/978-3-642-78043-1. Google Scholar [11] J. Milnor, Dynamics in One Complex Variable ntroductory Lectures, 2000. doi: 10.1007/978-3-663-08092-3. Google Scholar [12] E. Risler, Linéarisation des perturbations holomorphes des rotations et applications, Mémoires de la Société Mathématique de France, 77 (1999), 1-102. Google Scholar [13] M. Shishikura, On the quasiconformal surgery of rational functions, Ann. Sci. École Norm., 20 (1987), 1-29. doi: 10.24033/asens.1522. Google Scholar [14] J. C. Yoccoz, Analytic linearization of circle diffeomorphisms in Dynamical Systems and Small Divisors (Lecture Notes in Mathematics), Springer, Berlin, 1784 (2002), 125-173. doi: 10.1007/978-3-540-47928-4_3. Google Scholar

show all references

##### References:
 [1] L. Ahlfors, Lectures on Quasiconformal Mappings 2$^{nd}$ edition, University Lecture Series, 38 2006. doi: 10.1090/ulect/038. Google Scholar [2] V. Arnold, Small denominators I: On the mapping of a circle into itself, Nauk. Math., Series, 25 (1961), 21-96. Google Scholar [3] H. F. Chu, On the Blaschke circle diffeomorphisms, Proceedings of the American Mathematical Society, 143 (2015), 1169-1182. doi: 10.1090/S0002-9939-2014-12359-8. Google Scholar [4] N. Fagella and L. Geyer, Surgery on Herman rings of the complex standard family, Ergodic Theory and Dynamical Systems, 23 (2003), 493-508. doi: 10.1017/S0143385702001323. Google Scholar [5] L. Geyer, Siegel disks, Herman rings and Arnold family, Trans. Amer. Math. Soc., 353 (2001), 3661-3683. doi: 10.1090/S0002-9947-01-02662-9. Google Scholar [6] C. Henriksen, Holomorphic Dynamics and Herman Rings Master's thesis, Technical University of Denmark, 1997.Google Scholar [7] M. Herman, Sur les conjugaison différentiable des difféomorphismes du cercle á des rotations, Publ. Math. IHES., 49 (1979), 5-233. Google Scholar [8] M. Herman, Conjugaison quasi-symmétrique des difféomorphismes du cercle á des rotations et applications aux disques singuliers de siegel I, unpublished manuscript.Google Scholar [9] O. Lehto and K. Virtanen, Quasiconformal Mappings in the Plane Springer-Verlag, 1973. Google Scholar [10] W. de Melo and S. van Strien, One-Dimensional Dynamics Springer-Verlag, 1993. doi: 10.1007/978-3-642-78043-1. Google Scholar [11] J. Milnor, Dynamics in One Complex Variable ntroductory Lectures, 2000. doi: 10.1007/978-3-663-08092-3. Google Scholar [12] E. Risler, Linéarisation des perturbations holomorphes des rotations et applications, Mémoires de la Société Mathématique de France, 77 (1999), 1-102. Google Scholar [13] M. Shishikura, On the quasiconformal surgery of rational functions, Ann. Sci. École Norm., 20 (1987), 1-29. doi: 10.24033/asens.1522. Google Scholar [14] J. C. Yoccoz, Analytic linearization of circle diffeomorphisms in Dynamical Systems and Small Divisors (Lecture Notes in Mathematics), Springer, Berlin, 1784 (2002), 125-173. doi: 10.1007/978-3-540-47928-4_3. Google Scholar
 [1] S. R. Bullett and W. J. Harvey. Mating quadratic maps with Kleinian groups via quasiconformal surgery. Electronic Research Announcements, 2000, 6: 21-30. [2] Canela Jordi. Singular perturbations of Blaschke products and connectivity of Fatou components. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3567-3585. doi: 10.3934/dcds.2017153 [3] Gaven J. Martin. The Hilbert-Smith conjecture for quasiconformal actions. Electronic Research Announcements, 1999, 5: 66-70. [4] Shengliang Pan, Deyan Zhang, Zhongjun Chao. A generalization of the Blaschke-Lebesgue problem to a kind of convex domains. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1587-1601. doi: 10.3934/dcdsb.2016012 [5] Yong Fang. Quasiconformal Anosov flows and quasisymmetric rigidity of Hamenst$\ddot{a}$dt distances. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3471-3483. doi: 10.3934/dcds.2014.34.3471 [6] Nabil Bennenni, Kenza Guenda, Sihem Mesnager. DNA cyclic codes over rings. Advances in Mathematics of Communications, 2017, 11 (1) : 83-98. doi: 10.3934/amc.2017004 [7] Genady Ya. Grabarnik, Misha Guysinsky. Livšic theorem for banach rings. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4379-4390. doi: 10.3934/dcds.2017187 [8] Mikhail B. Sevryuk. Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman's method. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 569-595. doi: 10.3934/dcds.2007.18.569 [9] Stefano Luzzatto, Marks Ruziboev. Young towers for product systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1465-1491. doi: 10.3934/dcds.2016.36.1465 [10] Nir Avni, Benjamin Weiss. Generating product systems. Journal of Modern Dynamics, 2010, 4 (2) : 257-270. doi: 10.3934/jmd.2010.4.257 [11] Diego Samuel Rodrigues, Paulo Fernando de Arruda Mancera. Mathematical analysis and simulations involving chemotherapy and surgery on large human tumours under a suitable cell-kill functional response. Mathematical Biosciences & Engineering, 2013, 10 (1) : 221-234. doi: 10.3934/mbe.2013.10.221 [12] Koh Katagata. Transcendental entire functions whose Julia sets contain any infinite collection of quasiconformal copies of quadratic Julia sets. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5319-5337. doi: 10.3934/dcds.2019217 [13] Aicha Batoul, Kenza Guenda, T. Aaron Gulliver. Some constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2016, 10 (4) : 683-694. doi: 10.3934/amc.2016034 [14] Somphong Jitman, San Ling, Patanee Udomkavanich. Skew constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2012, 6 (1) : 39-63. doi: 10.3934/amc.2012.6.39 [15] Igor E. Shparlinski. On some dynamical systems in finite fields and residue rings. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 901-917. doi: 10.3934/dcds.2007.17.901 [16] M. DeDeo, M. Martínez, A. Medrano, M. Minei, H. Stark, A. Terras. Spectra of Heisenberg graphs over finite rings. Conference Publications, 2003, 2003 (Special) : 213-222. doi: 10.3934/proc.2003.2003.213 [17] M. F. Newman and Michael Vaughan-Lee. Some Lie rings associated with Burnside groups. Electronic Research Announcements, 1998, 4: 1-3. [18] Kanat Abdukhalikov. On codes over rings invariant under affine groups. Advances in Mathematics of Communications, 2013, 7 (3) : 253-265. doi: 10.3934/amc.2013.7.253 [19] Delphine Boucher, Patrick Solé, Felix Ulmer. Skew constacyclic codes over Galois rings. Advances in Mathematics of Communications, 2008, 2 (3) : 273-292. doi: 10.3934/amc.2008.2.273 [20] Eimear Byrne. On the weight distribution of codes over finite rings. Advances in Mathematics of Communications, 2011, 5 (2) : 395-406. doi: 10.3934/amc.2011.5.395

2018 Impact Factor: 1.143