# American Institute of Mathematical Sciences

December  2017, 37(12): 6243-6255. doi: 10.3934/dcds.2017270

## Perturbed fractional eigenvalue problems

 1 Department of Mathematics, University of Craiova, 200585 Craiova, Romania 2 "Simion Stoilow" Institute of Mathematics of the Romanian Academy, 010702 Bucharest, Romania 3 Department of Mathematics and Computer Science, University Politehnica of Bucharest, 060042 Bucharest, Romania 4 "Simion Stoilow" Institute of Mathematics of the Romanian Academy, 010702 Bucharest, Romania

* Corresponding author: Mihai Mihăilescu

Received  January 2017 Revised  June 2017 Published  August 2017

Fund Project: The research of M. Fărcăşeanu and M. Mihăilescu was partially supported by CNCS-UEFISCDI Grant No. PN-II-RU-TE- 2014-4-0007. D. Stancu-Dumitru has been partially supported by CNCS-UEFISCDI Grant No. PN-III-P1-1.1-PD-2016-0202

Let $Ω\subset\mathbb{R}^N$ ($N≥2$) be a bounded domain with Lipschitz boundary. For each $p∈(1,∞)$ and $s∈ (0,1)$ we denote by $(-Δ_p)^s$ the fractional $(s,p)$-Laplacian operator. In this paper we study the existence of nontrivial solutions for a perturbation of the eigenvalue problem $(-Δ_p)^s u=λ |u|^{p-2}u$, in $Ω$, $u=0$, in $\mathbb{R}^N\backslash Ω$, with a fractional $(t,q)$-Laplacian operator in the left-hand side of the equation, when $t∈(0,1)$ and $q∈(1,∞)$ are such that $s-N/p=t-N/q$. We show that nontrivial solutions for the perturbed eigenvalue problem exists if and only if parameter $λ$ is strictly larger than the first eigenvalue of the $(s,p)$-Laplacian.

Citation: Maria Fărcăşeanu, Mihai Mihăilescu, Denisa Stancu-Dumitru. Perturbed fractional eigenvalue problems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6243-6255. doi: 10.3934/dcds.2017270
##### References:
 [1] M. Bocea and M. Mihăilescu, Existence of nonnegative viscosity solutions for a class of problems involving the $∞$-Laplacian, Nonlinear Differential Equations and Applications (NoDEA), 23 (2016), Art. 11, 21 pp. doi: 10.1007/s00030-016-0373-2. Google Scholar [2] L. Brasco, E. Parini and M. Squassina, Stability of variational eigenvalues for the fractional $p$-Laplacian, Discrete Continuous Dynam. Systems -A, 36 (2016), 1813-1845. doi: 10.3934/dcds.2016.36.1813. Google Scholar [3] L. Del Pezzo, J. Fernandez Bonder and L. Lopez Rios, An optimization problem for the first eigenvalue of the $p$-fractional Laplacian, preprint, arXiv: 1601.03019v1.Google Scholar [4] L. Del Pezzo and A. Quaas, Global bifurcation for fractional $p$-Laplacian and an application, Z. Anal. Anwend., 35 (2016), 411-447. doi: 10.4171/ZAA/1572. Google Scholar [5] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004. Google Scholar [6] M. Fărcăşeanu, M. Mihăilescu and D. Stancu-Dumitru, On the set of eigenvalues of some PDEs with homogeneous Neumann boundary condition, Nonlinear Analysis, 116 (2015), 19-25. doi: 10.1016/j.na.2014.12.019. Google Scholar [7] R. Ferreira and M. Perez-Llanos, Limit problems for a Fractional $p$-Laplacian as $p \to \infty$, Nonlinear Differential Equations and Applications (NoDEA), 23 (2016), Art. 14, 28 pp. doi: 10.1007/s00030-016-0368-z. Google Scholar [8] G. Franzina and G. Palatucci, Fractional $p$-eigenvalues, Riv. Mat. Univ. Parma, 5 (2014), 373-386. Google Scholar [9] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, MA, 1985. Google Scholar [10] E. Lindgren and P. Lindqvist, Fractional eigenvalues, Calc. Var., 49 (2014), 795-826. doi: 10.1007/s00526-013-0600-1. Google Scholar [11] M. Mihăilescu, An eigenvalue problem possessing a continuous family of eigenvalues plus an isolated eigenvalue, Communications on Pure and Applied Analysis, 10 (2011), 701-708. doi: 10.3934/cpaa.2011.10.701. Google Scholar [12] M. Mihăilescu and G. Moroşanu, Eigenvalues of $-Δ_p -Δ_q$ under Neumann boundary condition, Canadian Mathematical Bulletin, 59 (2016), 606-616. doi: 10.4153/CMB-2016-025-2. Google Scholar

show all references

##### References:
 [1] M. Bocea and M. Mihăilescu, Existence of nonnegative viscosity solutions for a class of problems involving the $∞$-Laplacian, Nonlinear Differential Equations and Applications (NoDEA), 23 (2016), Art. 11, 21 pp. doi: 10.1007/s00030-016-0373-2. Google Scholar [2] L. Brasco, E. Parini and M. Squassina, Stability of variational eigenvalues for the fractional $p$-Laplacian, Discrete Continuous Dynam. Systems -A, 36 (2016), 1813-1845. doi: 10.3934/dcds.2016.36.1813. Google Scholar [3] L. Del Pezzo, J. Fernandez Bonder and L. Lopez Rios, An optimization problem for the first eigenvalue of the $p$-fractional Laplacian, preprint, arXiv: 1601.03019v1.Google Scholar [4] L. Del Pezzo and A. Quaas, Global bifurcation for fractional $p$-Laplacian and an application, Z. Anal. Anwend., 35 (2016), 411-447. doi: 10.4171/ZAA/1572. Google Scholar [5] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004. Google Scholar [6] M. Fărcăşeanu, M. Mihăilescu and D. Stancu-Dumitru, On the set of eigenvalues of some PDEs with homogeneous Neumann boundary condition, Nonlinear Analysis, 116 (2015), 19-25. doi: 10.1016/j.na.2014.12.019. Google Scholar [7] R. Ferreira and M. Perez-Llanos, Limit problems for a Fractional $p$-Laplacian as $p \to \infty$, Nonlinear Differential Equations and Applications (NoDEA), 23 (2016), Art. 14, 28 pp. doi: 10.1007/s00030-016-0368-z. Google Scholar [8] G. Franzina and G. Palatucci, Fractional $p$-eigenvalues, Riv. Mat. Univ. Parma, 5 (2014), 373-386. Google Scholar [9] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, MA, 1985. Google Scholar [10] E. Lindgren and P. Lindqvist, Fractional eigenvalues, Calc. Var., 49 (2014), 795-826. doi: 10.1007/s00526-013-0600-1. Google Scholar [11] M. Mihăilescu, An eigenvalue problem possessing a continuous family of eigenvalues plus an isolated eigenvalue, Communications on Pure and Applied Analysis, 10 (2011), 701-708. doi: 10.3934/cpaa.2011.10.701. Google Scholar [12] M. Mihăilescu and G. Moroşanu, Eigenvalues of $-Δ_p -Δ_q$ under Neumann boundary condition, Canadian Mathematical Bulletin, 59 (2016), 606-616. doi: 10.4153/CMB-2016-025-2. Google Scholar
 [1] Raffaella Servadei, Enrico Valdinoci. Variational methods for non-local operators of elliptic type. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2105-2137. doi: 10.3934/dcds.2013.33.2105 [2] Shixiu Zheng, Zhilei Xu, Huan Yang, Jintao Song, Zhenkuan Pan. Comparisons of different methods for balanced data classification under the discrete non-local total variational framework. Mathematical Foundations of Computing, 2019, 2 (1) : 11-28. doi: 10.3934/mfc.2019002 [3] Rafael Abreu, Cristian Morales-Rodrigo, Antonio Suárez. Some eigenvalue problems with non-local boundary conditions and applications. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2465-2474. doi: 10.3934/cpaa.2014.13.2465 [4] Walter Allegretto, Yanping Lin, Shuqing Ma. On the box method for a non-local parabolic variational inequality. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 71-88. doi: 10.3934/dcdsb.2001.1.71 [5] Anouar Bahrouni, VicenŢiu D. RĂdulescu. On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 379-389. doi: 10.3934/dcdss.2018021 [6] Bin Guo, Wenjie Gao. Finite-time blow-up and extinction rates of solutions to an initial Neumann problem involving the $p(x,t)-Laplace$ operator and a non-local term. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 715-730. doi: 10.3934/dcds.2016.36.715 [7] Anouar Bahrouni. Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity. Communications on Pure & Applied Analysis, 2017, 16 (1) : 243-252. doi: 10.3934/cpaa.2017011 [8] Alexander V. Rezounenko, Petr Zagalak. Non-local PDEs with discrete state-dependent delays: Well-posedness in a metric space. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 819-835. doi: 10.3934/dcds.2013.33.819 [9] Massimiliano Ferrara, Giovanni Molica Bisci, Binlin Zhang. Existence of weak solutions for non-local fractional problems via Morse theory. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2483-2499. doi: 10.3934/dcdsb.2014.19.2483 [10] Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768 [11] Joseph G. Conlon, André Schlichting. A non-local problem for the Fokker-Planck equation related to the Becker-Döring model. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1821-1889. doi: 10.3934/dcds.2019079 [12] Qiyu Jin, Ion Grama, Quansheng Liu. Convergence theorems for the Non-Local Means filter. Inverse Problems & Imaging, 2018, 12 (4) : 853-881. doi: 10.3934/ipi.2018036 [13] Gabriel Peyré, Sébastien Bougleux, Laurent Cohen. Non-local regularization of inverse problems. Inverse Problems & Imaging, 2011, 5 (2) : 511-530. doi: 10.3934/ipi.2011.5.511 [14] Olivier Bonnefon, Jérôme Coville, Guillaume Legendre. Concentration phenomenon in some non-local equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 763-781. doi: 10.3934/dcdsb.2017037 [15] Yuxia Guo, Jianjun Nie. Infinitely many non-radial solutions for the prescribed curvature problem of fractional operator. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6873-6898. doi: 10.3934/dcds.2016099 [16] Giacomo Bocerani, Dimitri Mugnai. A fractional eigenvalue problem in $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 619-629. doi: 10.3934/dcdss.2016016 [17] Xing-Bin Pan. An eigenvalue variation problem of magnetic Schrödinger operator in three dimensions. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 933-978. doi: 10.3934/dcds.2009.24.933 [18] Henri Berestycki, Nancy Rodríguez. A non-local bistable reaction-diffusion equation with a gap. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 685-723. doi: 10.3934/dcds.2017029 [19] Chiu-Yen Kao, Yuan Lou, Wenxian Shen. Random dispersal vs. non-local dispersal. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 551-596. doi: 10.3934/dcds.2010.26.551 [20] Hongjie Dong, Doyoon Kim. Schauder estimates for a class of non-local elliptic equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2319-2347. doi: 10.3934/dcds.2013.33.2319

2018 Impact Factor: 1.143