December  2017, 37(12): 6035-6067. doi: 10.3934/dcds.2017260

Dynamics for a non-autonomous reaction diffusion model with the fractional diffusion

1. 

School of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, Guangdong, China

2. 

Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China

3. 

School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, Gansu, China

* Corresponding author: Wen Tan

Received  July 2016 Revised  July 2017 Published  August 2017

Fund Project: The authors were supported by NSF of China (Grant No. 11471148, Grant No. 11522109)

In this paper, we study the dynamics of a non-autonomous reaction diffusion model with the fractional diffusion on the whole space. We firstly prove the existence of a $(L^2,L^2)$ pullback $\mathscr{D}_μ$ -attractor of this model. Then we show that the pullback $\mathscr{D}_μ$ -attractor attract the $\mathscr{D}_μ$ class (especially all $L^2$ -bounded set) in $L^{2+δ}$-norm for any $δ∈[0,∞)$. Moreover, the solution of the model is shown to be continuous in $H^s$ with respect to initial data under a slightly stronger condition on external forcing term. As an application, we prove that the $(L^2,L^2)$ pullback $\mathscr{D}_{μ}$-attractor indeed attract the class of $\mathscr{D}_{μ}$ in $H^s$ -norm, and thus the existence of a $(L^2, H^s)$ pullback $\mathscr{D}_μ$ -attractor is obtained.

Citation: Wen Tan, Chunyou Sun. Dynamics for a non-autonomous reaction diffusion model with the fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6035-6067. doi: 10.3934/dcds.2017260
References:
[1]

R. A. Adams, Sobolev Spaces, New York: Academic Press, 1975. Google Scholar

[2]

M. AnguianoP. Marín-Rubio and J. Real, Pullback attractors for non-autonomous reaction-diffusion equations with dynamical boundary conditions, J. Math. Anal. Appl., 383 (2011), 608-618. doi: 10.1016/j.jmaa.2011.05.046. Google Scholar

[3]

D. Applebaum, Lévy Processes and Stochastic Calculus, 2nd edition, Cambridge Studies in Advanced Mathematics, 116, Cambridge University Press, Cambridge, 2009. doi: 10.1017/CBO9780511809781. Google Scholar

[4]

H. Bahouri, J. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 343. Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7. Google Scholar

[5]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst., 10 (2004), 31-52. doi: 10.3934/dcds.2004.10.31. Google Scholar

[6]

C. BardosP. PenelU. Frisch and P.-L. Sulem, Modified dissipativity for a nonlinear evolution equations arising in turbulence, Arch. Rational Mech. Anal., 71 (1979), 237-256. doi: 10.1007/BF00280598. Google Scholar

[7]

P. BilerC. Imbert and G. Karch, Barenblatt profiles for a nonlocal porous medium equation, C. R. Math. Acad. Sci. Paris., 349 (2011), 641-645. doi: 10.1016/j.crma.2011.06.003. Google Scholar

[8]

M. BonforteY. Sire and J. L. Vázquez, Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains, Discrete Contin. Dyn. Syst., 35 (2015), 5725-5767. doi: 10.3934/dcds.2015.35.5725. Google Scholar

[9]

J. BourgainH. Brezis and P. Mironescu, Limiting embedding theorems for $W^{s,p}$ when $s\to \text{1}$ and applications, J. Anal. Math., 87 (2002), 77-101. doi: 10.1007/BF02868470. Google Scholar

[10]

L. A. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260. doi: 10.1080/03605300600987306. Google Scholar

[11]

L. A. CaffarelliF. Soria and J. L. Vázquez, Regularity of solutions of the fractional porous medium flow, J. Eur. Math. Soc., 15 (2013), 1701-1746. doi: 10.4171/JEMS/401. Google Scholar

[12]

L. A. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math., 171 (2010), 1903-1930. doi: 10.4007/annals.2010.171.1903. Google Scholar

[13]

D. CaoC. Sun and M. Yang, Dynamical for a stochastic reaction-diffusion equation with additive noise, J. Differential Equations, 259 (2015), 838-872. doi: 10.1016/j.jde.2015.02.020. Google Scholar

[14]

T. CaraballoG. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498. doi: 10.1016/j.na.2005.03.111. Google Scholar

[15]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-dimensional Non-autonomous Dynamical Systems, Applied Mathematical Sciences, 182. Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4. Google Scholar

[16]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, Amer. Math. Soc. Colloq. Publ., Vol. 49, Amer. Math. Soc., Providence, RI, 2002. Google Scholar

[17]

J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, Cambridge University Press, 2000. doi: 10.1017/CBO9780511526404. Google Scholar

[18]

P. Constantin, Euler equations, Navier-Stokes equations and turbulence, Lecture Notes in Mathematics, vol. 1871, Springer-Verlag, Berlin, 2006, 1–43. doi: 10.1007/11545989_1. Google Scholar

[19]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393. doi: 10.1007/BF01193705. Google Scholar

[20]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004. Google Scholar

[21]

T. DlotkoM. Kania and C. Sun, Pseudodifferential parabolic equations; two examples, Topol. Methods Nonlinear Anal., 43 (2014), 463-492. doi: 10.12775/TMNA.2014.028. Google Scholar

[22]

J. Droniou and C. Imbert, Fractal first-order partial differential equations, Arch. Ration. Mech. Anal., 182 (2006), 299-331. doi: 10.1007/s00205-006-0429-2. Google Scholar

[23]

N. Jacob, Pseudo Differential Operators and Markov Processes, Vol. Ⅰ, Ⅱ, Ⅲ, Imperial College Press, London, 2005. doi: 10.1142/9781860947155. Google Scholar

[24]

S. Jarohs and T. Weth, Asymptotic symmetry for a class of nonlinear fractional reaction-diffusion equations, Discrete Contin. Dyn. Syst., 34 (2014), 2581-2615. doi: 10.3934/dcds.2014.34.2581. Google Scholar

[25]

G. Karch, Nonlinear evolution equations with anomalous diffusion, Qualitative Properties of Solutions to Partial Differential Equations, J. Nečas Center for Mathematical Modeling, Charles University, Prague, 5 (2009), 25–68. Google Scholar

[26]

A. KiselevF. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math., 167 (2007), 445-453. doi: 10.1007/s00222-006-0020-3. Google Scholar

[27]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Mathematical Surveys and Monographs, Vol. 176, 2011. doi: 10.1090/surv/176. Google Scholar

[28]

G. Lukaszewicz, On pullback attractors in $H_0^1$ for nonautonomous reaction-diffusion equations, Internat. J. Bifur. Chaos, 20 (2010), 2637-2644. doi: 10.1142/S0218127410027258. Google Scholar

[29]

G. Lukaszewicz, On pullback attractors in $L^p$ for nonautonomous reaction-diffusion equations, Nonlinear Anal., 73 (2010), 350-357. doi: 10.1016/j.na.2010.03.023. Google Scholar

[30]

V. I. Mazya and T. O. Shaposhnikova, On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal., 195 (2002), 230-238. doi: 10.1006/jfan.2002.3955. Google Scholar

[31]

A. de PabloF. QuirósA. Rodríguez and J. L. Vázquez, A fractional porous medium equation, Adv. Math., 226 (2011), 1378-1409. doi: 10.1016/j.aim.2010.07.017. Google Scholar

[32]

J. C. Robinson, Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, 2001. doi: 10.1007/978-94-010-0732-0. Google Scholar

[33]

C. Sun and Y. Yuan, $L^p$ -type pullback attractors for a semilinear heat equation on time-varying domains, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 1029-1052. doi: 10.1017/S0308210515000177. Google Scholar

[34]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1997. doi: 10.1007/978-1-4612-0645-3. Google Scholar

[35]

H. Triebel, Theory of Function Spaces, Monographs in Mathematics, 78. Birkhuser Verlag, Basel, 1983. doi: 10.1007/978-3-0346-0416-1. Google Scholar

[36]

T. Trujillo and B. Wang, Continuity of strong solutions of reaction-diffusion equation in initial data, Nonlinear Anal., 69 (2008), 2525-2532. doi: 10.1016/j.na.2007.08.032. Google Scholar

[37]

E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl., 49 (2009), 33-44. Google Scholar

[38]

J. L. Vázquez, Nonlinear diffusion with fractional laplacian operators, in Nonlinear partial differential equations: the Abel Symposium 2010 (ed. H. Kenneth), Holden, Helge & Karlsen, Springer, 2012,271–298. doi: 10.1007/978-3-642-25361-4_15. Google Scholar

[39]

J. L. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 857-885. doi: 10.3934/dcdss.2014.7.857. Google Scholar

[40]

B. Wang, Attractors for reaction-diffusion equations in unbounded domains, Physica D, 128 (1999), 41-52. doi: 10.1016/S0167-2789(98)00304-2. Google Scholar

show all references

References:
[1]

R. A. Adams, Sobolev Spaces, New York: Academic Press, 1975. Google Scholar

[2]

M. AnguianoP. Marín-Rubio and J. Real, Pullback attractors for non-autonomous reaction-diffusion equations with dynamical boundary conditions, J. Math. Anal. Appl., 383 (2011), 608-618. doi: 10.1016/j.jmaa.2011.05.046. Google Scholar

[3]

D. Applebaum, Lévy Processes and Stochastic Calculus, 2nd edition, Cambridge Studies in Advanced Mathematics, 116, Cambridge University Press, Cambridge, 2009. doi: 10.1017/CBO9780511809781. Google Scholar

[4]

H. Bahouri, J. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 343. Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7. Google Scholar

[5]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst., 10 (2004), 31-52. doi: 10.3934/dcds.2004.10.31. Google Scholar

[6]

C. BardosP. PenelU. Frisch and P.-L. Sulem, Modified dissipativity for a nonlinear evolution equations arising in turbulence, Arch. Rational Mech. Anal., 71 (1979), 237-256. doi: 10.1007/BF00280598. Google Scholar

[7]

P. BilerC. Imbert and G. Karch, Barenblatt profiles for a nonlocal porous medium equation, C. R. Math. Acad. Sci. Paris., 349 (2011), 641-645. doi: 10.1016/j.crma.2011.06.003. Google Scholar

[8]

M. BonforteY. Sire and J. L. Vázquez, Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains, Discrete Contin. Dyn. Syst., 35 (2015), 5725-5767. doi: 10.3934/dcds.2015.35.5725. Google Scholar

[9]

J. BourgainH. Brezis and P. Mironescu, Limiting embedding theorems for $W^{s,p}$ when $s\to \text{1}$ and applications, J. Anal. Math., 87 (2002), 77-101. doi: 10.1007/BF02868470. Google Scholar

[10]

L. A. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260. doi: 10.1080/03605300600987306. Google Scholar

[11]

L. A. CaffarelliF. Soria and J. L. Vázquez, Regularity of solutions of the fractional porous medium flow, J. Eur. Math. Soc., 15 (2013), 1701-1746. doi: 10.4171/JEMS/401. Google Scholar

[12]

L. A. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math., 171 (2010), 1903-1930. doi: 10.4007/annals.2010.171.1903. Google Scholar

[13]

D. CaoC. Sun and M. Yang, Dynamical for a stochastic reaction-diffusion equation with additive noise, J. Differential Equations, 259 (2015), 838-872. doi: 10.1016/j.jde.2015.02.020. Google Scholar

[14]

T. CaraballoG. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498. doi: 10.1016/j.na.2005.03.111. Google Scholar

[15]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-dimensional Non-autonomous Dynamical Systems, Applied Mathematical Sciences, 182. Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4. Google Scholar

[16]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, Amer. Math. Soc. Colloq. Publ., Vol. 49, Amer. Math. Soc., Providence, RI, 2002. Google Scholar

[17]

J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, Cambridge University Press, 2000. doi: 10.1017/CBO9780511526404. Google Scholar

[18]

P. Constantin, Euler equations, Navier-Stokes equations and turbulence, Lecture Notes in Mathematics, vol. 1871, Springer-Verlag, Berlin, 2006, 1–43. doi: 10.1007/11545989_1. Google Scholar

[19]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393. doi: 10.1007/BF01193705. Google Scholar

[20]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004. Google Scholar

[21]

T. DlotkoM. Kania and C. Sun, Pseudodifferential parabolic equations; two examples, Topol. Methods Nonlinear Anal., 43 (2014), 463-492. doi: 10.12775/TMNA.2014.028. Google Scholar

[22]

J. Droniou and C. Imbert, Fractal first-order partial differential equations, Arch. Ration. Mech. Anal., 182 (2006), 299-331. doi: 10.1007/s00205-006-0429-2. Google Scholar

[23]

N. Jacob, Pseudo Differential Operators and Markov Processes, Vol. Ⅰ, Ⅱ, Ⅲ, Imperial College Press, London, 2005. doi: 10.1142/9781860947155. Google Scholar

[24]

S. Jarohs and T. Weth, Asymptotic symmetry for a class of nonlinear fractional reaction-diffusion equations, Discrete Contin. Dyn. Syst., 34 (2014), 2581-2615. doi: 10.3934/dcds.2014.34.2581. Google Scholar

[25]

G. Karch, Nonlinear evolution equations with anomalous diffusion, Qualitative Properties of Solutions to Partial Differential Equations, J. Nečas Center for Mathematical Modeling, Charles University, Prague, 5 (2009), 25–68. Google Scholar

[26]

A. KiselevF. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math., 167 (2007), 445-453. doi: 10.1007/s00222-006-0020-3. Google Scholar

[27]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Mathematical Surveys and Monographs, Vol. 176, 2011. doi: 10.1090/surv/176. Google Scholar

[28]

G. Lukaszewicz, On pullback attractors in $H_0^1$ for nonautonomous reaction-diffusion equations, Internat. J. Bifur. Chaos, 20 (2010), 2637-2644. doi: 10.1142/S0218127410027258. Google Scholar

[29]

G. Lukaszewicz, On pullback attractors in $L^p$ for nonautonomous reaction-diffusion equations, Nonlinear Anal., 73 (2010), 350-357. doi: 10.1016/j.na.2010.03.023. Google Scholar

[30]

V. I. Mazya and T. O. Shaposhnikova, On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal., 195 (2002), 230-238. doi: 10.1006/jfan.2002.3955. Google Scholar

[31]

A. de PabloF. QuirósA. Rodríguez and J. L. Vázquez, A fractional porous medium equation, Adv. Math., 226 (2011), 1378-1409. doi: 10.1016/j.aim.2010.07.017. Google Scholar

[32]

J. C. Robinson, Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, 2001. doi: 10.1007/978-94-010-0732-0. Google Scholar

[33]

C. Sun and Y. Yuan, $L^p$ -type pullback attractors for a semilinear heat equation on time-varying domains, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 1029-1052. doi: 10.1017/S0308210515000177. Google Scholar

[34]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1997. doi: 10.1007/978-1-4612-0645-3. Google Scholar

[35]

H. Triebel, Theory of Function Spaces, Monographs in Mathematics, 78. Birkhuser Verlag, Basel, 1983. doi: 10.1007/978-3-0346-0416-1. Google Scholar

[36]

T. Trujillo and B. Wang, Continuity of strong solutions of reaction-diffusion equation in initial data, Nonlinear Anal., 69 (2008), 2525-2532. doi: 10.1016/j.na.2007.08.032. Google Scholar

[37]

E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl., 49 (2009), 33-44. Google Scholar

[38]

J. L. Vázquez, Nonlinear diffusion with fractional laplacian operators, in Nonlinear partial differential equations: the Abel Symposium 2010 (ed. H. Kenneth), Holden, Helge & Karlsen, Springer, 2012,271–298. doi: 10.1007/978-3-642-25361-4_15. Google Scholar

[39]

J. L. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 857-885. doi: 10.3934/dcdss.2014.7.857. Google Scholar

[40]

B. Wang, Attractors for reaction-diffusion equations in unbounded domains, Physica D, 128 (1999), 41-52. doi: 10.1016/S0167-2789(98)00304-2. Google Scholar

[1]

Ming Wang, Yanbin Tang. Attractors in $H^2$ and $L^{2p-2}$ for reaction diffusion equations on unbounded domains. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1111-1121. doi: 10.3934/cpaa.2013.12.1111

[2]

Jong Yeoul Park, Jae Ug Jeong. Pullback attractors for a $2D$-non-autonomous incompressible non-Newtonian fluid with variable delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2687-2702. doi: 10.3934/dcdsb.2016068

[3]

Linfang Liu, Xianlong Fu. Existence and upper semicontinuity of (L2, Lq) pullback attractors for a stochastic p-laplacian equation. Communications on Pure & Applied Analysis, 2017, 6 (2) : 443-474. doi: 10.3934/cpaa.2017023

[4]

Julia García-Luengo, Pedro Marín-Rubio, José Real, James C. Robinson. Pullback attractors for the non-autonomous 2D Navier--Stokes equations for minimally regular forcing. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 203-227. doi: 10.3934/dcds.2014.34.203

[5]

Julia García-Luengo, Pedro Marín-Rubio, José Real. Regularity of pullback attractors and attraction in $H^1$ in arbitrarily large finite intervals for 2D Navier-Stokes equations with infinite delay. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 181-201. doi: 10.3934/dcds.2014.34.181

[6]

María Anguiano, Tomás Caraballo, José Real, José Valero. Pullback attractors for reaction-diffusion equations in some unbounded domains with an $H^{-1}$-valued non-autonomous forcing term and without uniqueness of solutions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 307-326. doi: 10.3934/dcdsb.2010.14.307

[7]

Abdelaziz Rhandi, Roland Schnaubelt. Asymptotic behaviour of a non-autonomous population equation with diffusion in $L^1$. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 663-683. doi: 10.3934/dcds.1999.5.663

[8]

Peter E. Kloeden, Jacson Simsen. Pullback attractors for non-autonomous evolution equations with spatially variable exponents. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2543-2557. doi: 10.3934/cpaa.2014.13.2543

[9]

Flank D. M. Bezerra, Vera L. Carbone, Marcelo J. D. Nascimento, Karina Schiabel. Pullback attractors for a class of non-autonomous thermoelastic plate systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3553-3571. doi: 10.3934/dcdsb.2017214

[10]

Zhijian Yang, Yanan Li. Upper semicontinuity of pullback attractors for non-autonomous Kirchhoff wave equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4899-4912. doi: 10.3934/dcdsb.2019036

[11]

Cornelis van der Mee. Direct scattering of AKNS systems with $L^2$ potentials. Conference Publications, 2015, 2015 (special) : 1089-1097. doi: 10.3934/proc.2015.1089

[12]

Vladimir V. Chepyzhov. Trajectory attractors for non-autonomous dissipative 2d Euler equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 811-832. doi: 10.3934/dcdsb.2015.20.811

[13]

Anne-Sophie de Suzzoni. Consequences of the choice of a particular basis of $L^2(S^3)$ for the cubic wave equation on the sphere and the Euclidean space. Communications on Pure & Applied Analysis, 2014, 13 (3) : 991-1015. doi: 10.3934/cpaa.2014.13.991

[14]

Xueqin Li, Chao Tang, Tianmin Huang. Poisson $S^2$-almost automorphy for stochastic processes and its applications to SPDEs driven by Lévy noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3309-3345. doi: 10.3934/dcdsb.2018282

[15]

Yongkuan Cheng, Yaotian Shen. Generalized quasilinear Schrödinger equations with concave functions $ l(s^2) $. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1311-1343. doi: 10.3934/dcds.2019056

[16]

Zhijian Yang, Yanan Li. Criteria on the existence and stability of pullback exponential attractors and their application to non-autonomous kirchhoff wave models. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2629-2653. doi: 10.3934/dcds.2018111

[17]

Xue-Li Song, Yan-Ren Hou. Pullback $\mathcal{D}$-attractors for the non-autonomous Newton-Boussinesq equation in two-dimensional bounded domain. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 991-1009. doi: 10.3934/dcds.2012.32.991

[18]

Bo You, Chengkui Zhong, Fang Li. Pullback attractors for three dimensional non-autonomous planetary geostrophic viscous equations of large-scale ocean circulation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1213-1226. doi: 10.3934/dcdsb.2014.19.1213

[19]

Ting Li. Pullback attractors for asymptotically upper semicompact non-autonomous multi-valued semiflows. Communications on Pure & Applied Analysis, 2007, 6 (1) : 279-285. doi: 10.3934/cpaa.2007.6.279

[20]

Lu Yang, Meihua Yang, Peter E. Kloeden. Pullback attractors for non-autonomous quasi-linear parabolic equations with dynamical boundary conditions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2635-2651. doi: 10.3934/dcdsb.2012.17.2635

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (30)
  • HTML views (29)
  • Cited by (1)

Other articles
by authors

[Back to Top]