November  2017, 37(11): 5943-5977. doi: 10.3934/dcds.2017258

Asymptotic large time behavior of singular solutions of the fast diffusion equation

1. 

Institute of Mathematics, Academia Sinica, Taipei, Taiwan

2. 

Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China

* Corresponding author: Soojung Kim

Received  December 2016 Revised  June 2017 Published  July 2017

We study the asymptotic large time behavior of singular solutions of the fast diffusion equation
$u_t=Δ u^m$
in
$({\mathbb R}^n\setminus\{0\})×(0, ∞)$
in the subcritical case
$0<m<\frac{n-2}{n}$
,
$n≥3$
. Firstly, we prove the existence of the singular solution
$u$
of the above equation that is trapped in between self-similar solutions of the form of
$t^{-α} f_i(t^{-β}x)$
,
$i=1, 2$
, with the initial value
$u_0$
satisfying
$A_1|x|^{-γ}≤ u_0≤ A_2|x|^{-γ}$
for some constants
$A_2>A_1>0$
and
$\frac{2}{1-m}<γ<\frac{n-2}{m}$
, where
$β:=\frac{1}{2-γ(1-m)}$, $α:=\frac{2\beta-1}{1-m}, $
and the self-similar profile
$f_i$
satisfies the elliptic equation
$Δ f^m+α f+β x· \nabla f=0 \,\,\,\,\,\,\mbox{ in ${\mathbb R}^n\setminus\{0\}$}$
with $\lim_{|x|\to0}|x|^{\frac{ α}{ β}}f_i(x)=A_i$ and $\lim_{|x|\to∞}|x|^{\frac{n-2}{m}}{f_i}(x)= D_{A_i} $ for some constants $D_{A_i}>0$. When $\frac{2}{1-m} < γ < n$, under an integrability condition on the initial value $u_0$ of the singular solution $u$, we prove that the rescaled function
$\tilde u(y, τ):= t^{\, α} u(t^{\, β} y, t),\,\,\,\,\,\, { τ:=\log t}, $
converges to some self-similar profile $f$ as $τ\to∞$.
Citation: Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258
References:
[1]

D. G. Aronson, The porous medium equation, Nonlinear diffusion problems, (Montecatini Terme, 1985), 1-46, Lecture Notes in Math., 1224, Springer, Berlin, 1986. doi: 10.1007/BFb0072687. Google Scholar

[2]

A. BlanchetM. BonforteJ. DolbeaultG. Grillo and J. L. Vázquez, Asymptotics of the fast diffusion equation via entropy estimates, Arch. Ration. Mech. Anal., 191 (2009), 347-385. doi: 10.1007/s00205-008-0155-z. Google Scholar

[3]

M. BonforteJ. DolbeaultG. Grillo and J. L. Vázquez, Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities, Proc. Natl. Acad. Sci. USA, 107 (2010), 16459-16464. doi: 10.1073/pnas.1003972107. Google Scholar

[4]

E. Chasseigne and J. L. Vázquez, Theory of extended solutions for fast-diffusion equations in optimal classes of data. Radiation from singularities, Arch. Ration. Mech. Anal., 164 (2002), 133-187. doi: 10.1007/s00205-002-0210-0. Google Scholar

[5]

P. Daskalopoulos and C. E. Kenig, Degenerate Diffusion: Initial Value Problems and Local Regularity Theory, EMS Tracts in Mathematics, 1. European Mathematical Society (EMS), Zürich, 2007. doi: 10.4171/033. Google Scholar

[6]

P. Daskalopoulos, J. King and N. Sesum, Extinction profile of complete non-compact solutions to the Yamabe flow, arXiv: 1306.0859.Google Scholar

[7]

P. Daskalopoulos, M. del Pino and N. Sesum, Type Ⅱ ancient compact solutions to the Yamabe flow, J. Reine Angew. Math., (2015), http://dx.doi.org/10.1515/crelle-2015-0048 in press. doi: 10.1515/crelle-2015-0048. Google Scholar

[8]

P. Daskalopoulos and N. Sesum, On the extinction profile of solutions to fast diffusion, J. Reine Angew. Math., 622 (2008), 95-119. doi: 10.1515/CRELLE.2008.066. Google Scholar

[9]

P. Daskalopoulos and N. Sesum, The classification of locally conformally flat Yamabe solitons, Adv. Math., 240 (2013), 346-369. doi: 10.1016/j.aim.2013.03.011. Google Scholar

[10]

M. FilaJ. L. VázquezM. Winkler and E. Yanagida, Rate of convergence to Barenblatt profiles for the fast diffusion equation, Arch. Ration. Mech. Anal., 204 (2012), 599-625. doi: 10.1007/s00205-011-0486-z. Google Scholar

[11]

M. Fila and M. Winkler, Optimal rates of convergence to the singular Barenblatt profile for the fast diffusion equation, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016), 309-324. doi: 10.1017/S0308210515000554. Google Scholar

[12]

M. Fila and M. Winkler, Rate of convergence to separable solutions of the fast diffusion equation, Israel J. Math., 213 (2016), 1-32. doi: 10.1007/s11856-016-1319-4. Google Scholar

[13]

M. Fila and M. Winkler, Slow growth of solutions of superfast diffusion equations with unbounded initial data, J. London Math. Soc.(2), 95 (2017), 659-683. doi: 10.1112/jlms.12029. Google Scholar

[14]

M. A. Herrero and M. Pierre, The Cauchy problem for $u_t = \Delta u^m$ when $0 < m < 1$, Trans. Amer. Math. Soc., 291 (1985), 145-158. doi: 10.1090/S0002-9947-1985-0797051-0. Google Scholar

[15]

S.Y. Hsu, Asymptotic profile of solutions of a singular diffusion equation as $t \to∞$, Nonlinear Anal., 48 (2002), 781-790. doi: 10.1016/S0362-546X(00)00214-5. Google Scholar

[16]

S. Y. Hsu, Singular limit and exact decay rate of a nonlinear elliptic equation, Nonlinear Anal., 75 (2012), 3443-3455. doi: 10.1016/j.na.2012.01.009. Google Scholar

[17]

S. Y. Hsu, Existence and asymptotic behaviour of solutions of the very fast diffusion equation, Manuscripta Math., 140 (2013), 441-460. doi: 10.1007/s00229-012-0576-8. Google Scholar

[18]

K. M. Hui, On some Dirichlet and Cauchy problems for a singular diffusion equation, Differential Integral Equations, 15 (2002), 769-804. Google Scholar

[19]

K. M. Hui, Singular limit of solutions of the very fast diffusion equation, Nonlinear Anal., 68 (2008), 1120-1147. doi: 10.1016/j.na.2006.12.009. Google Scholar

[20]

K. M. Hui, Asymptotic behaviour of solutions of the fast diffusion equation near its extinction time, J. Math. Anal. Appl., 454 (2017), 695-715. doi: 10.1016/j.jmaa.2017.05.006. Google Scholar

[21]

T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Grundlehren Math. Wiss. 132, Springer-Verlag, Berlin, New York, 1976. Google Scholar

[22]

O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Uraltceva, Linear and Quasilinear Equations of Parabolic Type, (Russian) Transl. Math. Mono. vol. 23, Amer. Math. Soc., Providence, R. I., U. S. A., 1968. Google Scholar

[23]

S. J. Osher and J. V. Ralston, L1 stability of traveling waves with applications to convective porous media flow, Comm. Pure Appl. Math., 35 (1982), 737-749. doi: 10.1002/cpa.3160350602. Google Scholar

[24]

M. del Pino and M. Sáez, On the extinction profile for solutions of $u_t=\Delta u^{\frac{N-2}{N+2}}$, Indiana Univ. Math. J., 50 (2001), 611-628. doi: 10.1512/iumj.2001.50.1876. Google Scholar

[25]

J. L. Vázquez, Nonexistence of solutions for nonlinear heat equations of fast-diffusion type, J. Math. Pures Appl.(9), 71 (1992), 503-526. Google Scholar

[26]

J. L. Vázquez, Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Equations of Porous Medium Type, Oxford Lecture Series in Mathematics and its Applications 33, Oxford University Press, Oxford, 2006. doi: 10.1093/acprof:oso/9780199202973.001.0001. Google Scholar

[27]

J. L. Vázquez and M. Winkler, The evolution of singularities in fast diffusion equations: Infinite time blow-down, SIAM J. Math. Anal., 43 (2011), 1499-1535. doi: 10.1137/100809465. Google Scholar

[28]

R. Ye, Global existence and convergence of Yamabe flow, J. Differential Geom., 39 (1994), 35-50. doi: 10.4310/jdg/1214454674. Google Scholar

show all references

References:
[1]

D. G. Aronson, The porous medium equation, Nonlinear diffusion problems, (Montecatini Terme, 1985), 1-46, Lecture Notes in Math., 1224, Springer, Berlin, 1986. doi: 10.1007/BFb0072687. Google Scholar

[2]

A. BlanchetM. BonforteJ. DolbeaultG. Grillo and J. L. Vázquez, Asymptotics of the fast diffusion equation via entropy estimates, Arch. Ration. Mech. Anal., 191 (2009), 347-385. doi: 10.1007/s00205-008-0155-z. Google Scholar

[3]

M. BonforteJ. DolbeaultG. Grillo and J. L. Vázquez, Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities, Proc. Natl. Acad. Sci. USA, 107 (2010), 16459-16464. doi: 10.1073/pnas.1003972107. Google Scholar

[4]

E. Chasseigne and J. L. Vázquez, Theory of extended solutions for fast-diffusion equations in optimal classes of data. Radiation from singularities, Arch. Ration. Mech. Anal., 164 (2002), 133-187. doi: 10.1007/s00205-002-0210-0. Google Scholar

[5]

P. Daskalopoulos and C. E. Kenig, Degenerate Diffusion: Initial Value Problems and Local Regularity Theory, EMS Tracts in Mathematics, 1. European Mathematical Society (EMS), Zürich, 2007. doi: 10.4171/033. Google Scholar

[6]

P. Daskalopoulos, J. King and N. Sesum, Extinction profile of complete non-compact solutions to the Yamabe flow, arXiv: 1306.0859.Google Scholar

[7]

P. Daskalopoulos, M. del Pino and N. Sesum, Type Ⅱ ancient compact solutions to the Yamabe flow, J. Reine Angew. Math., (2015), http://dx.doi.org/10.1515/crelle-2015-0048 in press. doi: 10.1515/crelle-2015-0048. Google Scholar

[8]

P. Daskalopoulos and N. Sesum, On the extinction profile of solutions to fast diffusion, J. Reine Angew. Math., 622 (2008), 95-119. doi: 10.1515/CRELLE.2008.066. Google Scholar

[9]

P. Daskalopoulos and N. Sesum, The classification of locally conformally flat Yamabe solitons, Adv. Math., 240 (2013), 346-369. doi: 10.1016/j.aim.2013.03.011. Google Scholar

[10]

M. FilaJ. L. VázquezM. Winkler and E. Yanagida, Rate of convergence to Barenblatt profiles for the fast diffusion equation, Arch. Ration. Mech. Anal., 204 (2012), 599-625. doi: 10.1007/s00205-011-0486-z. Google Scholar

[11]

M. Fila and M. Winkler, Optimal rates of convergence to the singular Barenblatt profile for the fast diffusion equation, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016), 309-324. doi: 10.1017/S0308210515000554. Google Scholar

[12]

M. Fila and M. Winkler, Rate of convergence to separable solutions of the fast diffusion equation, Israel J. Math., 213 (2016), 1-32. doi: 10.1007/s11856-016-1319-4. Google Scholar

[13]

M. Fila and M. Winkler, Slow growth of solutions of superfast diffusion equations with unbounded initial data, J. London Math. Soc.(2), 95 (2017), 659-683. doi: 10.1112/jlms.12029. Google Scholar

[14]

M. A. Herrero and M. Pierre, The Cauchy problem for $u_t = \Delta u^m$ when $0 < m < 1$, Trans. Amer. Math. Soc., 291 (1985), 145-158. doi: 10.1090/S0002-9947-1985-0797051-0. Google Scholar

[15]

S.Y. Hsu, Asymptotic profile of solutions of a singular diffusion equation as $t \to∞$, Nonlinear Anal., 48 (2002), 781-790. doi: 10.1016/S0362-546X(00)00214-5. Google Scholar

[16]

S. Y. Hsu, Singular limit and exact decay rate of a nonlinear elliptic equation, Nonlinear Anal., 75 (2012), 3443-3455. doi: 10.1016/j.na.2012.01.009. Google Scholar

[17]

S. Y. Hsu, Existence and asymptotic behaviour of solutions of the very fast diffusion equation, Manuscripta Math., 140 (2013), 441-460. doi: 10.1007/s00229-012-0576-8. Google Scholar

[18]

K. M. Hui, On some Dirichlet and Cauchy problems for a singular diffusion equation, Differential Integral Equations, 15 (2002), 769-804. Google Scholar

[19]

K. M. Hui, Singular limit of solutions of the very fast diffusion equation, Nonlinear Anal., 68 (2008), 1120-1147. doi: 10.1016/j.na.2006.12.009. Google Scholar

[20]

K. M. Hui, Asymptotic behaviour of solutions of the fast diffusion equation near its extinction time, J. Math. Anal. Appl., 454 (2017), 695-715. doi: 10.1016/j.jmaa.2017.05.006. Google Scholar

[21]

T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Grundlehren Math. Wiss. 132, Springer-Verlag, Berlin, New York, 1976. Google Scholar

[22]

O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Uraltceva, Linear and Quasilinear Equations of Parabolic Type, (Russian) Transl. Math. Mono. vol. 23, Amer. Math. Soc., Providence, R. I., U. S. A., 1968. Google Scholar

[23]

S. J. Osher and J. V. Ralston, L1 stability of traveling waves with applications to convective porous media flow, Comm. Pure Appl. Math., 35 (1982), 737-749. doi: 10.1002/cpa.3160350602. Google Scholar

[24]

M. del Pino and M. Sáez, On the extinction profile for solutions of $u_t=\Delta u^{\frac{N-2}{N+2}}$, Indiana Univ. Math. J., 50 (2001), 611-628. doi: 10.1512/iumj.2001.50.1876. Google Scholar

[25]

J. L. Vázquez, Nonexistence of solutions for nonlinear heat equations of fast-diffusion type, J. Math. Pures Appl.(9), 71 (1992), 503-526. Google Scholar

[26]

J. L. Vázquez, Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Equations of Porous Medium Type, Oxford Lecture Series in Mathematics and its Applications 33, Oxford University Press, Oxford, 2006. doi: 10.1093/acprof:oso/9780199202973.001.0001. Google Scholar

[27]

J. L. Vázquez and M. Winkler, The evolution of singularities in fast diffusion equations: Infinite time blow-down, SIAM J. Math. Anal., 43 (2011), 1499-1535. doi: 10.1137/100809465. Google Scholar

[28]

R. Ye, Global existence and convergence of Yamabe flow, J. Differential Geom., 39 (1994), 35-50. doi: 10.4310/jdg/1214454674. Google Scholar

[1]

Shota Sato, Eiji Yanagida. Forward self-similar solution with a moving singularity for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 313-331. doi: 10.3934/dcds.2010.26.313

[2]

Shota Sato, Eiji Yanagida. Singular backward self-similar solutions of a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 897-906. doi: 10.3934/dcdss.2011.4.897

[3]

Cong He, Hongjun Yu. Large time behavior of the solution to the Landau Equation with specular reflective boundary condition. Kinetic & Related Models, 2013, 6 (3) : 601-623. doi: 10.3934/krm.2013.6.601

[4]

Marco Cannone, Grzegorz Karch. On self-similar solutions to the homogeneous Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 801-808. doi: 10.3934/krm.2013.6.801

[5]

Qiaolin He. Numerical simulation and self-similar analysis of singular solutions of Prandtl equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 101-116. doi: 10.3934/dcdsb.2010.13.101

[6]

Kin Ming Hui, Sunghoon Kim. Existence of Neumann and singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4859-4887. doi: 10.3934/dcds.2015.35.4859

[7]

Kin Ming Hui. Existence of self-similar solutions of the inverse mean curvature flow. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 863-880. doi: 10.3934/dcds.2019036

[8]

Bendong Lou. Self-similar solutions in a sector for a quasilinear parabolic equation. Networks & Heterogeneous Media, 2012, 7 (4) : 857-879. doi: 10.3934/nhm.2012.7.857

[9]

Marek Fila, Michael Winkler, Eiji Yanagida. Convergence to self-similar solutions for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 703-716. doi: 10.3934/dcds.2008.21.703

[10]

Fouad Hadj Selem, Hiroaki Kikuchi, Juncheng Wei. Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4613-4626. doi: 10.3934/dcds.2013.33.4613

[11]

Bhargav Kumar Kakumani, Suman Kumar Tumuluri. Asymptotic behavior of the solution of a diffusion equation with nonlocal boundary conditions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 407-419. doi: 10.3934/dcdsb.2017019

[12]

Weronika Biedrzycka, Marta Tyran-Kamińska. Self-similar solutions of fragmentation equations revisited. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 13-27. doi: 10.3934/dcdsb.2018002

[13]

K. T. Joseph, Philippe G. LeFloch. Boundary layers in weak solutions of hyperbolic conservation laws II. self-similar vanishing diffusion limits. Communications on Pure & Applied Analysis, 2002, 1 (1) : 51-76. doi: 10.3934/cpaa.2002.1.51

[14]

Jochen Merker, Aleš Matas. Positivity of self-similar solutions of doubly nonlinear reaction-diffusion equations. Conference Publications, 2015, 2015 (special) : 817-825. doi: 10.3934/proc.2015.0817

[15]

Adrien Blanchet, Philippe Laurençot. Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion. Communications on Pure & Applied Analysis, 2012, 11 (1) : 47-60. doi: 10.3934/cpaa.2012.11.47

[16]

Zoran Grujić. Regularity of forward-in-time self-similar solutions to the 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 837-843. doi: 10.3934/dcds.2006.14.837

[17]

Joana Terra, Noemi Wolanski. Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 581-605. doi: 10.3934/dcds.2011.31.581

[18]

Weike Wang, Xin Xu. Large time behavior of solution for the full compressible navier-stokes-maxwell system. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2283-2313. doi: 10.3934/cpaa.2015.14.2283

[19]

Zhenhua Guo, Wenchao Dong, Jinjing Liu. Large-time behavior of solution to an inflow problem on the half space for a class of compressible non-Newtonian fluids. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2133-2161. doi: 10.3934/cpaa.2019096

[20]

Rostislav Grigorchuk, Volodymyr Nekrashevych. Self-similar groups, operator algebras and Schur complement. Journal of Modern Dynamics, 2007, 1 (3) : 323-370. doi: 10.3934/jmd.2007.1.323

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (28)
  • Cited by (0)

Other articles
by authors

[Back to Top]