November  2017, 37(11): 5693-5706. doi: 10.3934/dcds.2017246

2-manifolds and inverse limits of set-valued functions on intervals

1. 

University of Auckland, Private Bag 92019, Auckland, New Zealand

2. 

University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, United Kingdom

* Corresponding author: Sina Greenwood

Received  April 2017 Published  July 2017

Suppose for each $n\in\mathbb{N}$, $f_n \colon [0,1] \to 2^{[0,1]}$ is a function whose graph $\Gamma(f_n) = \left\lbrace (x,y) \in [0,1]^2 \colon y \in f_n(x)\right\rbrace$ is closed in $[0,1]^2$ (here $2^{[0,1]}$ is the space of non-empty closed subsets of $[0,1]$). We show that the generalized inverse limit $\varprojlim (f_n) = \left\lbrace (x_n) \in [0,1]^\mathbb{N} \colon \forall n \in \mathbb{N},\ x_n \in f_n(x_{n+1})\right\rbrace$ of such a sequence of functions cannot be an arbitrary continuum, answering a long-standing open problem in the study of generalized inverse limits. In particular we show that if such an inverse limit is a 2-manifold then it is a torus and hence it is impossible to obtain a sphere.

Citation: Sina Greenwood, Rolf Suabedissen. 2-manifolds and inverse limits of set-valued functions on intervals. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5693-5706. doi: 10.3934/dcds.2017246
References:
[1]

E. Akin, The General Topology of Dynamical Systems, vol. 1 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1993. Google Scholar

[2]

I. Banič and J. Kennedy, Inverse limits with bonding functions whose graphs are arcs, Topology Appl., 190 (2015), 9-21. doi: 10.1016/j.topol.2015.04.009. Google Scholar

[3]

I. BaničM. Črepnjak and V. Nall, Some results about inverse limits with set-valued bonding functions, Topology Appl., 202 (2016), 106-111. doi: 10.1016/j.topol.2016.01.007. Google Scholar

[4]

R. Engelking, General Topology, vol. 6 of Sigma Series in Pure Mathematics, 2nd edition, Heldermann Verlag, Berlin, 1989, Translated from the Polish by the author. Google Scholar

[5]

J. Gallier and D. Xu, A Guide to the Classification Theorem for Compact Surfaces, vol. 9 of Geometry and Computing, Springer, Heidelberg, 2013. doi: 10.1007/978-3-642-34364-3. Google Scholar

[6]

S. Greenwood and J. Kennedy, Connectedness and Ingram-Mahavier products, Topology Appl., 166 (2014), 1-9. doi: 10.1016/j.topol.2014.01.016. Google Scholar

[7]

S. Greenwood and J. Kennedy, Connected generalized inverse limits over intervals, Fund. Math., 236 (2017), 1-43. doi: 10.4064/fm241-4-2016. Google Scholar

[8]

G. Guzik, Minimal invariant closed sets of set-valued semiflows, J. Math. Anal. Appl., 449 (2017), 382-396. doi: 10.1016/j.jmaa.2016.11.072. Google Scholar

[9]

K. P. Hart, J. Nagata and J. E. Vaughan (eds.), Encyclopedia of General Topology, Elsevier Science Publishers, B. V., Amsterdam, 2004. Google Scholar

[10]

W. Hurewicz and H. Wallman, Dimension Theory, Princeton Mathematical Series, v. 4, Princeton University Press, Princeton, N. J., 1941. Google Scholar

[11]

A. Illanes, A circle is not the generalized inverse limit of a subset of $[0, 1]^2$, Proc. Amer. Math. Soc., 139 (2011), 2987-2993. doi: 10.1090/S0002-9939-2011-10876-1. Google Scholar

[12]

W. T. Ingram, An Introduction to Inverse Limits with Set-Valued Functions, SpringerBriefs in Mathematics, Springer, New York, 2012. doi: 10.1007/978-1-4614-4487-9. Google Scholar

[13]

W. T. Ingram and W. S. Mahavier, Inverse limits of upper semi-continuous set valued functions, Houston J. Math., 32 (2006), 119-130. Google Scholar

[14]

H. Kato, On dimension and shape of inverse limits with set-valued functions, Fund. Math., 236 (2017), 83-99. doi: 10.4064/fm233-4-2016. Google Scholar

[15]

J. Kennedy and V. Nall, Dynamical properties of shift maps on inverse limits with a set valued function, Ergodic Theory and Dynamical Systems, (2016), 1-26. doi: 10.1017/etds.2016.73. Google Scholar

[16]

R. Langevin and F. Przytycki, Entropie de l'image inverse d'une application, Bull. Soc. Math. France, 120 (1992), 237-250. doi: 10.24033/bsmf.2185. Google Scholar

[17]

W. S. Mahavier, Inverse limits with subsets of $[0, 1]×[0, 1]$, Topology Appl., 141 (2004), 225-231. doi: 10.1016/j.topol.2003.12.008. Google Scholar

[18]

R. P. McGehee and T. Wiandt, Conley decomposition for closed relations, J. Difference Equ. Appl., 12 (2006), 1-47. doi: 10.1080/00207210500171620. Google Scholar

[19]

R. McGehee, Attractors for closed relations on compact hausdorff spaces, Indiana Univ. Math. J., 41 (1992), 1165-1209. doi: 10.1512/iumj.1992.41.41058. Google Scholar

[20]

V. Nall, More continua which are not the inverse limit with a closed subset of a unit square, Houston J. Math., 41 (2015), 1039-1050. Google Scholar

[21]

A. R. Pears, Dimension Theory of General Spaces, Cambridge University Press, Cambridge, England-New York-Melbourne, 1975. Google Scholar

[22]

T. Wiandt, Liapunov functions for closed relations, J. Difference Equ. Appl., 14 (2008), 705-722. doi: 10.1080/10236190701809315. Google Scholar

show all references

References:
[1]

E. Akin, The General Topology of Dynamical Systems, vol. 1 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1993. Google Scholar

[2]

I. Banič and J. Kennedy, Inverse limits with bonding functions whose graphs are arcs, Topology Appl., 190 (2015), 9-21. doi: 10.1016/j.topol.2015.04.009. Google Scholar

[3]

I. BaničM. Črepnjak and V. Nall, Some results about inverse limits with set-valued bonding functions, Topology Appl., 202 (2016), 106-111. doi: 10.1016/j.topol.2016.01.007. Google Scholar

[4]

R. Engelking, General Topology, vol. 6 of Sigma Series in Pure Mathematics, 2nd edition, Heldermann Verlag, Berlin, 1989, Translated from the Polish by the author. Google Scholar

[5]

J. Gallier and D. Xu, A Guide to the Classification Theorem for Compact Surfaces, vol. 9 of Geometry and Computing, Springer, Heidelberg, 2013. doi: 10.1007/978-3-642-34364-3. Google Scholar

[6]

S. Greenwood and J. Kennedy, Connectedness and Ingram-Mahavier products, Topology Appl., 166 (2014), 1-9. doi: 10.1016/j.topol.2014.01.016. Google Scholar

[7]

S. Greenwood and J. Kennedy, Connected generalized inverse limits over intervals, Fund. Math., 236 (2017), 1-43. doi: 10.4064/fm241-4-2016. Google Scholar

[8]

G. Guzik, Minimal invariant closed sets of set-valued semiflows, J. Math. Anal. Appl., 449 (2017), 382-396. doi: 10.1016/j.jmaa.2016.11.072. Google Scholar

[9]

K. P. Hart, J. Nagata and J. E. Vaughan (eds.), Encyclopedia of General Topology, Elsevier Science Publishers, B. V., Amsterdam, 2004. Google Scholar

[10]

W. Hurewicz and H. Wallman, Dimension Theory, Princeton Mathematical Series, v. 4, Princeton University Press, Princeton, N. J., 1941. Google Scholar

[11]

A. Illanes, A circle is not the generalized inverse limit of a subset of $[0, 1]^2$, Proc. Amer. Math. Soc., 139 (2011), 2987-2993. doi: 10.1090/S0002-9939-2011-10876-1. Google Scholar

[12]

W. T. Ingram, An Introduction to Inverse Limits with Set-Valued Functions, SpringerBriefs in Mathematics, Springer, New York, 2012. doi: 10.1007/978-1-4614-4487-9. Google Scholar

[13]

W. T. Ingram and W. S. Mahavier, Inverse limits of upper semi-continuous set valued functions, Houston J. Math., 32 (2006), 119-130. Google Scholar

[14]

H. Kato, On dimension and shape of inverse limits with set-valued functions, Fund. Math., 236 (2017), 83-99. doi: 10.4064/fm233-4-2016. Google Scholar

[15]

J. Kennedy and V. Nall, Dynamical properties of shift maps on inverse limits with a set valued function, Ergodic Theory and Dynamical Systems, (2016), 1-26. doi: 10.1017/etds.2016.73. Google Scholar

[16]

R. Langevin and F. Przytycki, Entropie de l'image inverse d'une application, Bull. Soc. Math. France, 120 (1992), 237-250. doi: 10.24033/bsmf.2185. Google Scholar

[17]

W. S. Mahavier, Inverse limits with subsets of $[0, 1]×[0, 1]$, Topology Appl., 141 (2004), 225-231. doi: 10.1016/j.topol.2003.12.008. Google Scholar

[18]

R. P. McGehee and T. Wiandt, Conley decomposition for closed relations, J. Difference Equ. Appl., 12 (2006), 1-47. doi: 10.1080/00207210500171620. Google Scholar

[19]

R. McGehee, Attractors for closed relations on compact hausdorff spaces, Indiana Univ. Math. J., 41 (1992), 1165-1209. doi: 10.1512/iumj.1992.41.41058. Google Scholar

[20]

V. Nall, More continua which are not the inverse limit with a closed subset of a unit square, Houston J. Math., 41 (2015), 1039-1050. Google Scholar

[21]

A. R. Pears, Dimension Theory of General Spaces, Cambridge University Press, Cambridge, England-New York-Melbourne, 1975. Google Scholar

[22]

T. Wiandt, Liapunov functions for closed relations, J. Difference Equ. Appl., 14 (2008), 705-722. doi: 10.1080/10236190701809315. Google Scholar

Figure 1.  A torus as a GIL on intervals
Figure 2.  A circle as a binary Mahavier product of simply-connected spaces
[1]

Tamara Fastovska. Upper semicontinuous attractor for 2D Mindlin-Timoshenko thermoelastic model with memory. Communications on Pure & Applied Analysis, 2007, 6 (1) : 83-101. doi: 10.3934/cpaa.2007.6.83

[2]

Jan Prüss, Gieri Simonett. On the manifold of closed hypersurfaces in $\mathbb{R}^n$. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5407-5428. doi: 10.3934/dcds.2013.33.5407

[3]

Hassan Emamirad, Philippe Rogeon. Semiclassical limit of Husimi function. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 669-676. doi: 10.3934/dcdss.2013.6.669

[4]

Mark Pollicott. Closed orbits and homology for $C^2$-flows. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 529-534. doi: 10.3934/dcds.1999.5.529

[5]

Massimo Tarallo, Zhe Zhou. Limit periodic upper and lower solutions in a generic sense. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 293-309. doi: 10.3934/dcds.2018014

[6]

Raz Kupferman, Cy Maor. The emergence of torsion in the continuum limit of distributed edge-dislocations. Journal of Geometric Mechanics, 2015, 7 (3) : 361-387. doi: 10.3934/jgm.2015.7.361

[7]

Helge Holden, Nils Henrik Risebro. The continuum limit of Follow-the-Leader models — a short proof. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 715-722. doi: 10.3934/dcds.2018031

[8]

Henk Bruin, Sonja Štimac. On isotopy and unimodal inverse limit spaces. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1245-1253. doi: 10.3934/dcds.2012.32.1245

[9]

Sigve Hovda. Closed-form expression for the inverse of a class of tridiagonal matrices. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 437-445. doi: 10.3934/naco.2016019

[10]

Dingheng Pi. Limit cycles for regularized piecewise smooth systems with a switching manifold of codimension two. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 881-905. doi: 10.3934/dcdsb.2018211

[11]

Agust Sverrir Egilsson. On embedding the $1:1:2$ resonance space in a Poisson manifold. Electronic Research Announcements, 1995, 1: 48-56.

[12]

Armengol Gasull, Hector Giacomini. Upper bounds for the number of limit cycles of some planar polynomial differential systems. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 217-229. doi: 10.3934/dcds.2010.27.217

[13]

Jian Hou, Liwei Zhang. A barrier function method for generalized Nash equilibrium problems. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1091-1108. doi: 10.3934/jimo.2014.10.1091

[14]

Seung Jun Chang, Jae Gil Choi. Generalized transforms and generalized convolution products associated with Gaussian paths on function space. Communications on Pure & Applied Analysis, 2020, 19 (1) : 371-389. doi: 10.3934/cpaa.2020019

[15]

Guillaume Bal, Alexandre Jollivet. Generalized stability estimates in inverse transport theory. Inverse Problems & Imaging, 2018, 12 (1) : 59-90. doi: 10.3934/ipi.2018003

[16]

Zhuchun Li, Yi Liu, Xiaoping Xue. Convergence and stability of generalized gradient systems by Łojasiewicz inequality with application in continuum Kuramoto model. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 345-367. doi: 10.3934/dcds.2019014

[17]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[18]

A. Pankov. Gap solitons in periodic discrete nonlinear Schrödinger equations II: A generalized Nehari manifold approach. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 419-430. doi: 10.3934/dcds.2007.19.419

[19]

Duanzhi Zhang. $P$-cyclic symmetric closed characteristics on compact convex $P$-cyclic symmetric hypersurface in R2n. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 947-964. doi: 10.3934/dcds.2013.33.947

[20]

Luca Dieci, Cinzia Elia. Piecewise smooth systems near a co-dimension 2 discontinuity manifold: Can one say what should happen?. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1039-1068. doi: 10.3934/dcdss.2016041

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (24)
  • HTML views (37)
  • Cited by (0)

Other articles
by authors

[Back to Top]