June  2017, 37(6): 3487-3502. doi: 10.3934/dcds.2017148

Global exponential κ-dissipative semigroups and exponential attraction

1. 

Department of Mathematics, College of Science, Hohai University, Nanjing 210098, China

2. 

School of Mathematics and Statistics, Huazhong University of Science & Technology, Wuhan 430074, China

3. 

Department of Mathematics, Nanjing University, Nanjing 210093, China

* Corresponding author: Jin Zhang

Received  July 2015 Revised  January 2017 Published  February 2017

Globally exponential $κ-$dissipativity, a new concept of dissipativity for semigroups, is introduced. It provides a more general criterion for the exponential attraction of some evolutionary systems. Assuming that a semigroup $\{S(t)\}_{t≥q 0}$ has a bounded absorbing set, then $\{S(t)\}_{t≥q 0}$ is globally exponentially $κ-$dissipative if and only if there exists a compact set $\mathcal{A}^*$ that is positive invariant and attracts any bounded subset exponentially. The set $\mathcal{A}^*$ need not be finite dimensional. This result is illustrated with an application to a damped semilinear wave equation on a bounded domain.

Citation: Jin Zhang, Peter E. Kloeden, Meihua Yang, Chengkui Zhong. Global exponential κ-dissipative semigroups and exponential attraction. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3487-3502. doi: 10.3934/dcds.2017148
References:
[1]

A. V. Babin and B. Nicolaenko, Exponential attractors of reaction-diffusion systems in an unbounded domain, Journal of Dynamics and Differential Equations, 7 (1995), 567-590. doi: 10.1007/BF02218725. Google Scholar

[2]

A. V. Babin and M. I. Vishik, Attractor of Evolution Equations North-Holland Publishing Co. , Amsterdam, 1992. Google Scholar

[3]

I. Chueshov and I. Lasiecka, Long-time behavior of second evolution equations with nonlinear damping Memoirs Amer. Math. Soc. 195 (2008), ⅷ+183 pp. doi: 10.1090/memo/0912. Google Scholar

[4]

P. Constantin, C. Foias, B. Nicolaenko and R. Temam, Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4612-3506-4. Google Scholar

[5]

K. Deimling, Nonlinear Functional Analysis Springer-Verlag, Berlin, 1985. doi: 10.1007/978-3-662-00547-7. Google Scholar

[6]

L. Dung and B. Nicolaenko, Exponential attractors in Banach spaces, Journal of Dynamics and Differential Equations, 13 (2001), 791-806. doi: 10.1023/A:1016676027666. Google Scholar

[7]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations John Wiley & Sons, New-York, 1994. Google Scholar

[8]

M. Efendiev and A. Miranville, Finite dimensional attractors for a class of reaction-diffusion equations in Rn with a strong nonlinearity, Discrete and Continuous Dynamical Systems, 5 (1999), 399-424. doi: 10.3934/dcds.1999.5.399. Google Scholar

[9]

M. EfendievA. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in R3, Comptes Rendus de l'Académie des Sciences -Series I, 330 (2000), 713-718. Google Scholar

[10]

M. EfendievA. Miranville and S. Zelik, Exponential attractors for a singularly perturbed Cahn-Hilliard system, Mathematische Nachrichten, 272 (2004), 11-31. doi: 10.1002/mana.200310186. Google Scholar

[11]

M. EfendievA. Miranville and S. Zelik, Infinite-dimensional exponential attractors for nonlinear reaction-diffusion systems in unbounded domains and their approximation, Proc. Roy. Soc. London Series, 460 (2004), 1107-1129. doi: 10.1098/rspa.2003.1182. Google Scholar

[12]

P. FabrieC. Galusinski and A. Miranville, Uniform inertial sets for damped wave equations, Discrete and Continuous Dynamical Systems, 6 (2000), 393-418. doi: 10.3934/dcds.2000.6.393. Google Scholar

[13]

C. Foias and E. Olson, Finite fractal dimension and Hölder-Lipschitz parametrization, Indiana University Mathematics Journal, 45 (1996), 603-616. doi: 10.1512/iumj.1996.45.1326. Google Scholar

[14]

C. FoiasG. R. Sell and R. Temam, Inertial manifolds for nonlinear evolutionary equations, Journal of Differential Equations, 73 (1988), 309-353. doi: 10.1016/0022-0396(88)90110-6. Google Scholar

[15]

S. GattiM. GrasselliV. Pata and M. Squassina, Robust exponential attractors for a family of nonconserved phase-field systems with memory, Discrete and Continuous Dynamical Systems, 12 (2005), 1019-1029. doi: 10.3934/dcds.2005.12.1019. Google Scholar

[16]

J. Hale, Asymptotic Behavior of Dissipative Systems AMS, Providence, RJ, 1988. Google Scholar

[17]

B. R. Hunt and V. Y. Kaloshin, Regularity of embbeddings of infinite-dimensional fractal sets into finite-dimensional spaces, Nonlinearity, 12 (1999), 1263-1275. doi: 10.1088/0951-7715/12/5/303. Google Scholar

[18]

Q. F. MaS. H. Wang and C. K. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana University Mathematics Journal, 51 (2002), 1541-1559. doi: 10.1512/iumj.2002.51.2255. Google Scholar

[19]

J. Malek and D. Prazak, Large time behavior by the method of l-trajectories, Journal of Differential Equations, 181 (2002), 243-279. doi: 10.1006/jdeq.2001.4087. Google Scholar

[20]

R. Mane, On the dimension of the compact invariant sets of certain non-linear maps, dynamical systems and turbulence, Springer Lecture Notes in Mathematics, Springer-Verlag, Heidelberg, 898 (1981), 230-242. Google Scholar

[21]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, Handbook of Differential Equations: Evolutionary Equations, vol. Ⅳ, Elsevier, Amsterdam, (2008), 103-200. doi: 10.1016/S1874-5717(08)00003-0. Google Scholar

[22]

V. Pata and M. Squassina, On the strongly damped wave equation, Communications in Mathematical Physics, 253 (2005), 511-533. doi: 10.1007/s00220-004-1233-1. Google Scholar

[23]

D. Prazak, A necessary and sufficient condition for the existence of an exponential attractor, Central European Journal of Mathematics, 1 (2003), 411-417. doi: 10.2478/BF02475219. Google Scholar

[24]

J. C. Robinson, Infinite-dimensional Dynamical Systems Cambridge University Press, Cambridge, 2002. doi: 10.1007/978-94-010-0732-0. Google Scholar

[25]

J. C. Robinson, Linear embeddings of finite-dimensional subsets of Banach spaces into Euclidean spaces, Nonlinearity, 22 (2009), 711-728. doi: 10.1088/0951-7715/22/4/001. Google Scholar

[26]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4757-5037-9. Google Scholar

[27]

M. Struwe, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems 3rd ed. Springer-Verlag, Berlin, 1990. doi: 10.1007/978-3-662-02624-3. Google Scholar

[28]

C. Y. SunM. H. Yang and C. K. Zhong, Global attractors for the wave equation with nonlinear damping, Journal of Differential Equations, 227 (2006), 427-443. doi: 10.1016/j.jde.2005.09.010. Google Scholar

[29]

R. Temam, Infinite-Dimensional Systems in Mechanics and Physics Springer-Verlag, New York, 1997.Google Scholar

[30]

S. Zelik, The attractor for a nonlinear reaction-diffusion system in the unbounded domain and Kolmogorov's A-entropy, Mathematische Nachrichten, 232 (2001), 129-179. doi: 10.1002/1522-2616(200112)232:1<129::AID-MANA129>3.0.CO;2-T. Google Scholar

[31]

C. K. Zhong and W. S. Niu, On the Z2-index of the global attractor for a class of p-Laplacian equations, Nonlinear Analysis, 73 (2010), 3698-3704. doi: 10.1016/j.na.2010.07.022. Google Scholar

[32]

C. K. ZhongC. Y. Sun and M. F. Niu, On the existence of global attractor for a class of infinite dimensional dissipative nonlinear dynamical systems, Chinese Annals of Mathematics, Series B, 26 (2005), 393-400. doi: 10.1142/S0252959905000312. Google Scholar

[33]

C. K. ZhongM. H. Yang and C. Y. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, Journal of Differential Equations, 223 (2006), 367-399. doi: 10.1016/j.jde.2005.06.008. Google Scholar

[34]

Y. S. Zhong and C. K. Zhong, Exponential attractors for semigroups in Banach spaces, Nonlinear Analysis: Theory, Methods & Applications, 75 (2012), 1799-1809. doi: 10.1016/j.na.2011.09.020. Google Scholar

show all references

References:
[1]

A. V. Babin and B. Nicolaenko, Exponential attractors of reaction-diffusion systems in an unbounded domain, Journal of Dynamics and Differential Equations, 7 (1995), 567-590. doi: 10.1007/BF02218725. Google Scholar

[2]

A. V. Babin and M. I. Vishik, Attractor of Evolution Equations North-Holland Publishing Co. , Amsterdam, 1992. Google Scholar

[3]

I. Chueshov and I. Lasiecka, Long-time behavior of second evolution equations with nonlinear damping Memoirs Amer. Math. Soc. 195 (2008), ⅷ+183 pp. doi: 10.1090/memo/0912. Google Scholar

[4]

P. Constantin, C. Foias, B. Nicolaenko and R. Temam, Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4612-3506-4. Google Scholar

[5]

K. Deimling, Nonlinear Functional Analysis Springer-Verlag, Berlin, 1985. doi: 10.1007/978-3-662-00547-7. Google Scholar

[6]

L. Dung and B. Nicolaenko, Exponential attractors in Banach spaces, Journal of Dynamics and Differential Equations, 13 (2001), 791-806. doi: 10.1023/A:1016676027666. Google Scholar

[7]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations John Wiley & Sons, New-York, 1994. Google Scholar

[8]

M. Efendiev and A. Miranville, Finite dimensional attractors for a class of reaction-diffusion equations in Rn with a strong nonlinearity, Discrete and Continuous Dynamical Systems, 5 (1999), 399-424. doi: 10.3934/dcds.1999.5.399. Google Scholar

[9]

M. EfendievA. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in R3, Comptes Rendus de l'Académie des Sciences -Series I, 330 (2000), 713-718. Google Scholar

[10]

M. EfendievA. Miranville and S. Zelik, Exponential attractors for a singularly perturbed Cahn-Hilliard system, Mathematische Nachrichten, 272 (2004), 11-31. doi: 10.1002/mana.200310186. Google Scholar

[11]

M. EfendievA. Miranville and S. Zelik, Infinite-dimensional exponential attractors for nonlinear reaction-diffusion systems in unbounded domains and their approximation, Proc. Roy. Soc. London Series, 460 (2004), 1107-1129. doi: 10.1098/rspa.2003.1182. Google Scholar

[12]

P. FabrieC. Galusinski and A. Miranville, Uniform inertial sets for damped wave equations, Discrete and Continuous Dynamical Systems, 6 (2000), 393-418. doi: 10.3934/dcds.2000.6.393. Google Scholar

[13]

C. Foias and E. Olson, Finite fractal dimension and Hölder-Lipschitz parametrization, Indiana University Mathematics Journal, 45 (1996), 603-616. doi: 10.1512/iumj.1996.45.1326. Google Scholar

[14]

C. FoiasG. R. Sell and R. Temam, Inertial manifolds for nonlinear evolutionary equations, Journal of Differential Equations, 73 (1988), 309-353. doi: 10.1016/0022-0396(88)90110-6. Google Scholar

[15]

S. GattiM. GrasselliV. Pata and M. Squassina, Robust exponential attractors for a family of nonconserved phase-field systems with memory, Discrete and Continuous Dynamical Systems, 12 (2005), 1019-1029. doi: 10.3934/dcds.2005.12.1019. Google Scholar

[16]

J. Hale, Asymptotic Behavior of Dissipative Systems AMS, Providence, RJ, 1988. Google Scholar

[17]

B. R. Hunt and V. Y. Kaloshin, Regularity of embbeddings of infinite-dimensional fractal sets into finite-dimensional spaces, Nonlinearity, 12 (1999), 1263-1275. doi: 10.1088/0951-7715/12/5/303. Google Scholar

[18]

Q. F. MaS. H. Wang and C. K. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana University Mathematics Journal, 51 (2002), 1541-1559. doi: 10.1512/iumj.2002.51.2255. Google Scholar

[19]

J. Malek and D. Prazak, Large time behavior by the method of l-trajectories, Journal of Differential Equations, 181 (2002), 243-279. doi: 10.1006/jdeq.2001.4087. Google Scholar

[20]

R. Mane, On the dimension of the compact invariant sets of certain non-linear maps, dynamical systems and turbulence, Springer Lecture Notes in Mathematics, Springer-Verlag, Heidelberg, 898 (1981), 230-242. Google Scholar

[21]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, Handbook of Differential Equations: Evolutionary Equations, vol. Ⅳ, Elsevier, Amsterdam, (2008), 103-200. doi: 10.1016/S1874-5717(08)00003-0. Google Scholar

[22]

V. Pata and M. Squassina, On the strongly damped wave equation, Communications in Mathematical Physics, 253 (2005), 511-533. doi: 10.1007/s00220-004-1233-1. Google Scholar

[23]

D. Prazak, A necessary and sufficient condition for the existence of an exponential attractor, Central European Journal of Mathematics, 1 (2003), 411-417. doi: 10.2478/BF02475219. Google Scholar

[24]

J. C. Robinson, Infinite-dimensional Dynamical Systems Cambridge University Press, Cambridge, 2002. doi: 10.1007/978-94-010-0732-0. Google Scholar

[25]

J. C. Robinson, Linear embeddings of finite-dimensional subsets of Banach spaces into Euclidean spaces, Nonlinearity, 22 (2009), 711-728. doi: 10.1088/0951-7715/22/4/001. Google Scholar

[26]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4757-5037-9. Google Scholar

[27]

M. Struwe, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems 3rd ed. Springer-Verlag, Berlin, 1990. doi: 10.1007/978-3-662-02624-3. Google Scholar

[28]

C. Y. SunM. H. Yang and C. K. Zhong, Global attractors for the wave equation with nonlinear damping, Journal of Differential Equations, 227 (2006), 427-443. doi: 10.1016/j.jde.2005.09.010. Google Scholar

[29]

R. Temam, Infinite-Dimensional Systems in Mechanics and Physics Springer-Verlag, New York, 1997.Google Scholar

[30]

S. Zelik, The attractor for a nonlinear reaction-diffusion system in the unbounded domain and Kolmogorov's A-entropy, Mathematische Nachrichten, 232 (2001), 129-179. doi: 10.1002/1522-2616(200112)232:1<129::AID-MANA129>3.0.CO;2-T. Google Scholar

[31]

C. K. Zhong and W. S. Niu, On the Z2-index of the global attractor for a class of p-Laplacian equations, Nonlinear Analysis, 73 (2010), 3698-3704. doi: 10.1016/j.na.2010.07.022. Google Scholar

[32]

C. K. ZhongC. Y. Sun and M. F. Niu, On the existence of global attractor for a class of infinite dimensional dissipative nonlinear dynamical systems, Chinese Annals of Mathematics, Series B, 26 (2005), 393-400. doi: 10.1142/S0252959905000312. Google Scholar

[33]

C. K. ZhongM. H. Yang and C. Y. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, Journal of Differential Equations, 223 (2006), 367-399. doi: 10.1016/j.jde.2005.06.008. Google Scholar

[34]

Y. S. Zhong and C. K. Zhong, Exponential attractors for semigroups in Banach spaces, Nonlinear Analysis: Theory, Methods & Applications, 75 (2012), 1799-1809. doi: 10.1016/j.na.2011.09.020. Google Scholar

[1]

Min Zhu, Panpan Ren, Junping Li. Exponential stability of solutions for retarded stochastic differential equations without dissipativity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2923-2938. doi: 10.3934/dcdsb.2017157

[2]

Dalibor Pražák. Exponential attractor for the delayed logistic equation with a nonlinear diffusion. Conference Publications, 2003, 2003 (Special) : 717-726. doi: 10.3934/proc.2003.2003.717

[3]

Messoud Efendiev, Anna Zhigun. On an exponential attractor for a class of PDEs with degenerate diffusion and chemotaxis. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 651-673. doi: 10.3934/dcds.2018028

[4]

Jesenko Vukadinovic. Global dissipativity and inertial manifolds for diffusive burgers equations with low-wavenumber instability. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 327-341. doi: 10.3934/dcds.2011.29.327

[5]

Zeqi Zhu, Caidi Zhao. Pullback attractor and invariant measures for the three-dimensional regularized MHD equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1461-1477. doi: 10.3934/dcds.2018060

[6]

Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215

[7]

I. D. Chueshov, Iryna Ryzhkova. A global attractor for a fluid--plate interaction model. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1635-1656. doi: 10.3934/cpaa.2013.12.1635

[8]

Hiroshi Matano, Ken-Ichi Nakamura. The global attractor of semilinear parabolic equations on $S^1$. Discrete & Continuous Dynamical Systems - A, 1997, 3 (1) : 1-24. doi: 10.3934/dcds.1997.3.1

[9]

Yuncheng You. Global attractor of the Gray-Scott equations. Communications on Pure & Applied Analysis, 2008, 7 (4) : 947-970. doi: 10.3934/cpaa.2008.7.947

[10]

Rana D. Parshad, Juan B. Gutierrez. On the global attractor of the Trojan Y Chromosome model. Communications on Pure & Applied Analysis, 2011, 10 (1) : 339-359. doi: 10.3934/cpaa.2011.10.339

[11]

Alexey Cheskidov, Susan Friedlander, Nataša Pavlović. An inviscid dyadic model of turbulence: The global attractor. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 781-794. doi: 10.3934/dcds.2010.26.781

[12]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

[13]

Barbara Kaltenbacher, Irena Lasiecka. Global existence and exponential decay rates for the Westervelt equation. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 503-523. doi: 10.3934/dcdss.2009.2.503

[14]

Michele Coti Zelati. Global and exponential attractors for the singularly perturbed extensible beam. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 1041-1060. doi: 10.3934/dcds.2009.25.1041

[15]

Milena Stanislavova. On the global attractor for the damped Benjamin-Bona-Mahony equation. Conference Publications, 2005, 2005 (Special) : 824-832. doi: 10.3934/proc.2005.2005.824

[16]

Ning Ju. The global attractor for the solutions to the 3D viscous primitive equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 159-179. doi: 10.3934/dcds.2007.17.159

[17]

Antonio Segatti. Global attractor for a class of doubly nonlinear abstract evolution equations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 801-820. doi: 10.3934/dcds.2006.14.801

[18]

Wided Kechiche. Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1233-1252. doi: 10.3934/cpaa.2017060

[19]

Marilena N. Poulou, Nikolaos M. Stavrakakis. Global attractor for a Klein-Gordon-Schrodinger type system. Conference Publications, 2007, 2007 (Special) : 844-854. doi: 10.3934/proc.2007.2007.844

[20]

Zhijian Yang, Zhiming Liu. Global attractor for a strongly damped wave equation with fully supercritical nonlinearities. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2181-2205. doi: 10.3934/dcds.2017094

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (13)
  • HTML views (9)
  • Cited by (1)

[Back to Top]