June  2017, 37(6): 3059-3078. doi: 10.3934/dcds.2017131

Onofri inequalities and rigidity results

1. 

Ceremade, CNRS UMR n$^{o}$ 7534 and Université Paris-Dauphine PSL research university Place de Lattre de Tassigny, 75775 Paris Cédex 16, France

2. 

RICAM and Universität Wien Wolfgang Pauli Institute Oskar-Morgenstern-Platz 1,1090 Wien, Austria

* Corresponding author: Jean Dolbeault

Received  November 2015 Revised  January 2017 Published  February 2017

This paper is devoted to the Moser-Trudinger-Onofri inequality on smooth compact connected Riemannian manifolds. We establish a rigidity result for the Euler-Lagrange equation and deduce an estimate of the optimal constant in the inequality on two-dimensional closed Riemannian manifolds. Compared to existing results, we provide a non-local criterion which is well adapted to variational methods, introduce a nonlinear flow along which the evolution of a functional related with the inequality is monotone and get an integral remainder term which allows us to discuss optimality issues. As an important application of our method, we also consider the non-compact case of the Moser-Trudinger-Onofri inequality on the two-dimensional Euclidean space, with weights. The standard weight is the one that is computed when projecting the two-dimensional sphere using the stereographic projection, but we also give more general results which are of interest, for instance, for the Keller-Segel model in chemotaxis.

Citation: Jean Dolbeault, Maria J. Esteban, Gaspard Jankowiak. Onofri inequalities and rigidity results. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3059-3078. doi: 10.3934/dcds.2017131
References:
[1]

T. Aubin, Meilleures constantes dans le théoréme d'inclusion de Sobolev et un théoréme de Fredholm non linéaire pour la transformation conforme de la courbure scalaire, J. Funct. Anal., 32 (1979), 148-174. doi: 10.1016/0022-1236(79)90052-1. Google Scholar

[2]

T. Aubin, Nonlinear Analysis on Manifolds. Monge-Ampére Equations vol. 252 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, New York, 1982. doi: 10.1007/978-1-4612-5734-9. Google Scholar

[3]

D. Bakry and M. Ledoux, Sobolev inequalities and Myers's diameter theorem for an abstract Markov generator, Duke Math. J., 85 (1996), 253-270. doi: 10.1215/S0012-7094-96-08511-7. Google Scholar

[4]

D. Bakry, I. Gentil and M. Ledoux, Analysis and Geometry of Markov Diffusion Operators vol. 348 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer, Cham, 2014. doi: 10.1007/978-3-319-00227-9. Google Scholar

[5]

W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. of Math. (2), 138 (1993), 213-242. doi: 10.2307/2946638. Google Scholar

[6]

A. Bentaleb, Inégalité de Sobolev pour l'opérateur ultrasphérique, C. R. Acad. Sci. Paris Sér. I Math., 317 (1993), 187-190. Google Scholar

[7]

M. Berger, P. Gauduchon and E. Mazet, Le Spectre d'une Variété Riemannienne Lecture Notes in Mathematics, Vol. 194, Springer-Verlag, Berlin, 1971. Google Scholar

[8]

R. J. Berman and B. Berndtsson, Moser-Trudinger type inequalities for complex Monge-Ampére operators and Aubin's "hypothése fondamentale", ArXiv e-prints.Google Scholar

[9]

M.-F. Bidaut-Véron and L. Véron, Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math., 106 (1991), 489-539. doi: 10.1007/BF01243922. Google Scholar

[10]

P. BilerL. Corrias and J. Dolbeault, Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model of chemotaxis, Journal of Mathematical Biology, 63 (2011), 1-32. doi: 10.1007/s00285-010-0357-5. Google Scholar

[11]

P. BilerG. KarchP. Laurençot and T. Nadzieja, The 8π-problem for radially symmetric solutions of a chemotaxis model in the plane, Math. Methods Appl. Sci., 29 (2006), 1563-1583. doi: 10.1002/mma.743. Google Scholar

[12]

J. Campos and J. Dolbeault, A functional framework for the Keller-Segel system: Logarithmic Hardy-Littlewood-Sobolev and related spectral gap inequalities, C. R. Math. Acad. Sci. Paris, 350 (2012), 949-954. doi: 10.1016/j.crma.2012.10.023. Google Scholar

[13]

J. F. Campos and J. Dolbeault, Asymptotic estimates for the parabolic-elliptic keller-segel model in the plane, Comm. Partial Differential Equations, 39 (2014), 806-841. doi: 10.1080/03605302.2014.885046. Google Scholar

[14]

E. A. Carlen and M. Loss, Competing symmetries, the logarithmic HLS inequality and Onofri's inequality on ${\mathbb{S}^n} $, Geom. Funct. Anal., 2 (1992), 90-104. doi: 10.1007/BF01895706. Google Scholar

[15]

S.-Y. A. Chang, Extremal functions in a sharp form of Sobolev inequality, in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI, (1987), 715-723. Google Scholar

[16]

S.-Y. A. Chang and P. C. Yang, Conformal deformation of metrics on ${\mathbb{S}^2} $, J. Differential Geom., 27 (1988), 259-296. Google Scholar

[17]

S. -Y. A. Chang, Non-linear Elliptic Equations in Conformal Geometry Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2004. doi: 10.4171/006. Google Scholar

[18]

S.-Y. A. Chang and P. C. Yang, Prescribing Gaussian curvature on ${\mathbb{S}^2} $, Acta Math., 159 (1987), 215-259. doi: 10.1007/BF02392560. Google Scholar

[19]

S. -Y. A. Chang and P. C. Yang, The inequality of Moser and Trudinger and applications to conformal geometry, Comm. Pure Appl. Math., 56 (2003), 1135-1150, Dedicated to the memory of Jürgen K. Moser. doi: 10.1002/cpa.3029. Google Scholar

[20]

W. X. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622. doi: 10.1215/S0012-7094-91-06325-8. Google Scholar

[21]

P. Cherrier, Une inégalité de Sobolev sur les variétés riemanniennes, Bull. Sci. Math. (2), 103 (1979), 353-374. Google Scholar

[22]

J. Demange, Improved Gagliardo-Nirenberg-Sobolev inequalities on manifolds with positive curvature, J. Funct. Anal., 254 (2008), 593-611. doi: 10.1016/j.jfa.2007.01.017. Google Scholar

[23]

J. Dolbeault and M. J. Esteban, Branches of non-symmetric critical points and symmetry breaking in nonlinear elliptic partial differential equations, Nonlinearity, 27 (2014), 435-465. doi: 10.1088/0951-7715/27/3/435. Google Scholar

[24]

J. DolbeaultM. J. Esteban and G. Jankowiak, The Moser-Trudinger-Onofri inequality, Chinese Annals of Math. B, 36 (2015), 777-802. doi: 10.1007/s11401-015-0976-7. Google Scholar

[25]

J. DolbeaultM. J. EstebanM. Kowalczyk and M. Loss, Improved interpolation inequalities on the sphere, Discrete and Continuous Dynamical Systems Series S (DCDS-S), 7 (2014), 695-724. doi: 10.3934/dcdss.2014.7.695. Google Scholar

[26]

J. DolbeaultM. J. Esteban and M. Loss, Nonlinear flows and rigidity results on compact manifolds, Journal of Functional Analysis, 267 (2014), 1338-1363. doi: 10.1016/j.jfa.2014.05.021. Google Scholar

[27]

Z. Faget, Best constants in the exceptional case of Sobolev inequalities, Math. Z., 252 (2006), 133-146. doi: 10.1007/s00209-005-0850-5. Google Scholar

[28]

Z. Faget, Optimal constants in the exceptional case of Sobolev inequalities on Riemannian manifolds, Trans. Amer. Math. Soc., 360 (2008), 2303-2325. doi: 10.1090/S0002-9947-07-04308-5. Google Scholar

[29]

É. Fontenas, Sur les constantes de Sobolev des variétés riemanniennes compactes et les fonctions extrémales des sphéres, Bull. Sci. Math., 121 (1997), 71-96. Google Scholar

[30]

A. Ghigi, On the Moser-Onofri and Prékopa-Leindler inequalities, Collect. Math., 56 (2005), 143-156. Google Scholar

[31]

N. Ghoussoub and A. Moradifam, Functional Inequalities: New Perspectives and New Applications vol. 187 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2013. doi: 10.1090/surv/187. Google Scholar

[32]

B. GidasW. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in ${\mathbb{R}^n} $, in Mathematical analysis and applications, Part A, vol. 7 of Adv. in Math. Suppl. Stud., Academic Press, New York-London, (1981), 369-402. Google Scholar

[33]

E. Hebey, Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities vol. 5 of Courant Lecture Notes in Mathematics, New York University Courant Institute of Mathematical Sciences, New York, 1999. Google Scholar

[34]

C. W. Hong, A best constant and the Gaussian curvature, Proc. Amer. Math. Soc., 97 (1986), 737-747. doi: 10.1090/S0002-9939-1986-0845999-7. Google Scholar

[35]

Y. Y. Li, Harnack type inequality: The method of moving planes, Comm. Math. Phys., 200 (1999), 421-444. doi: 10.1007/s002200050536. Google Scholar

[36]

A. Lichnerowicz, Géométrie des Groupes de Transformations Travaux et Recherches Mathématiques, Ⅲ. Dunod, Paris, 1958. Google Scholar

[37]

J. R. Licois and L. Véron, Un théoréme d'annulation pour des équations elliptiques non linéaires sur des variétés riemanniennes compactes, C. R. Acad. Sci. Paris Sér. I Math., 320 (1995), 1337-1342. Google Scholar

[38]

J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970/71), 1077-1092. doi: 10.1512/iumj.1971.20.20101. Google Scholar

[39]

Y. NaitoT. Suzuki and K. Yoshida, Self-similar solutions to a parabolic system modeling chemotaxis, J. Differential Equations, 184 (2002), 386-421. doi: 10.1006/jdeq.2001.4146. Google Scholar

[40]

M. Nolasco and G. Tarantello, On a sharp Sobolev-type inequality on two-dimensional compact manifolds, Arch. Ration. Mech. Anal., 145 (1998), 161-195. doi: 10.1007/s002050050127. Google Scholar

[41]

E. Onofri, On the positivity of the effective action in a theory of random surfaces, Comm. Math. Phys., 86 (1982), 321-326. doi: 10.1007/BF01212171. Google Scholar

[42]

B. OsgoodR. Phillips and P. Sarnak, Extremals of determinants of Laplacians, J. Funct. Anal., 80 (1988), 148-211. doi: 10.1016/0022-1236(88)90070-5. Google Scholar

[43]

D. H. PhongJ. SongJ. Sturm and B. Weinkove, The Moser-Trudinger inequality on Kähler-Einstein manifolds, American Journal of Mathematics, 130 (2008), 1067-1085. doi: 10.1353/ajm.0.0013. Google Scholar

[44]

Y. A. Rubinstein, On energy functionals, Kähler-Einstein metrics, and the Moser-Trudinger-Onofri neighborhood, J. Funct. Anal., 255 (2008), 2641-2660. doi: 10.1016/j.jfa.2007.10.009. Google Scholar

[45]

Y. A. Rubinstein, Some discretizations of geometric evolution equations and the Ricci iteration on the space of Kähler metrics, Adv. Math., 218 (2008), 1526-1565. doi: 10.1016/j.aim.2008.03.017. Google Scholar

[46]

G. Tarantello, Selfdual Gauge Field Vortices: An Analytical Approach Progress in Nonlinear Differential Equations and their Applications, 72, Birkhäuser Boston, Inc. , Boston, MA, 2008. doi: 10.1007/978-0-8176-4608-0. Google Scholar

[47]

G. Tian and X. Zhu, A nonlinear inequality of Moser-Trudinger type, Calculus of Variations and Partial Differential Equations, 10 (2000), 349-354. doi: 10.1007/s005260010349. Google Scholar

[48]

N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-483. Google Scholar

show all references

References:
[1]

T. Aubin, Meilleures constantes dans le théoréme d'inclusion de Sobolev et un théoréme de Fredholm non linéaire pour la transformation conforme de la courbure scalaire, J. Funct. Anal., 32 (1979), 148-174. doi: 10.1016/0022-1236(79)90052-1. Google Scholar

[2]

T. Aubin, Nonlinear Analysis on Manifolds. Monge-Ampére Equations vol. 252 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, New York, 1982. doi: 10.1007/978-1-4612-5734-9. Google Scholar

[3]

D. Bakry and M. Ledoux, Sobolev inequalities and Myers's diameter theorem for an abstract Markov generator, Duke Math. J., 85 (1996), 253-270. doi: 10.1215/S0012-7094-96-08511-7. Google Scholar

[4]

D. Bakry, I. Gentil and M. Ledoux, Analysis and Geometry of Markov Diffusion Operators vol. 348 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer, Cham, 2014. doi: 10.1007/978-3-319-00227-9. Google Scholar

[5]

W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. of Math. (2), 138 (1993), 213-242. doi: 10.2307/2946638. Google Scholar

[6]

A. Bentaleb, Inégalité de Sobolev pour l'opérateur ultrasphérique, C. R. Acad. Sci. Paris Sér. I Math., 317 (1993), 187-190. Google Scholar

[7]

M. Berger, P. Gauduchon and E. Mazet, Le Spectre d'une Variété Riemannienne Lecture Notes in Mathematics, Vol. 194, Springer-Verlag, Berlin, 1971. Google Scholar

[8]

R. J. Berman and B. Berndtsson, Moser-Trudinger type inequalities for complex Monge-Ampére operators and Aubin's "hypothése fondamentale", ArXiv e-prints.Google Scholar

[9]

M.-F. Bidaut-Véron and L. Véron, Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math., 106 (1991), 489-539. doi: 10.1007/BF01243922. Google Scholar

[10]

P. BilerL. Corrias and J. Dolbeault, Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model of chemotaxis, Journal of Mathematical Biology, 63 (2011), 1-32. doi: 10.1007/s00285-010-0357-5. Google Scholar

[11]

P. BilerG. KarchP. Laurençot and T. Nadzieja, The 8π-problem for radially symmetric solutions of a chemotaxis model in the plane, Math. Methods Appl. Sci., 29 (2006), 1563-1583. doi: 10.1002/mma.743. Google Scholar

[12]

J. Campos and J. Dolbeault, A functional framework for the Keller-Segel system: Logarithmic Hardy-Littlewood-Sobolev and related spectral gap inequalities, C. R. Math. Acad. Sci. Paris, 350 (2012), 949-954. doi: 10.1016/j.crma.2012.10.023. Google Scholar

[13]

J. F. Campos and J. Dolbeault, Asymptotic estimates for the parabolic-elliptic keller-segel model in the plane, Comm. Partial Differential Equations, 39 (2014), 806-841. doi: 10.1080/03605302.2014.885046. Google Scholar

[14]

E. A. Carlen and M. Loss, Competing symmetries, the logarithmic HLS inequality and Onofri's inequality on ${\mathbb{S}^n} $, Geom. Funct. Anal., 2 (1992), 90-104. doi: 10.1007/BF01895706. Google Scholar

[15]

S.-Y. A. Chang, Extremal functions in a sharp form of Sobolev inequality, in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI, (1987), 715-723. Google Scholar

[16]

S.-Y. A. Chang and P. C. Yang, Conformal deformation of metrics on ${\mathbb{S}^2} $, J. Differential Geom., 27 (1988), 259-296. Google Scholar

[17]

S. -Y. A. Chang, Non-linear Elliptic Equations in Conformal Geometry Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2004. doi: 10.4171/006. Google Scholar

[18]

S.-Y. A. Chang and P. C. Yang, Prescribing Gaussian curvature on ${\mathbb{S}^2} $, Acta Math., 159 (1987), 215-259. doi: 10.1007/BF02392560. Google Scholar

[19]

S. -Y. A. Chang and P. C. Yang, The inequality of Moser and Trudinger and applications to conformal geometry, Comm. Pure Appl. Math., 56 (2003), 1135-1150, Dedicated to the memory of Jürgen K. Moser. doi: 10.1002/cpa.3029. Google Scholar

[20]

W. X. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622. doi: 10.1215/S0012-7094-91-06325-8. Google Scholar

[21]

P. Cherrier, Une inégalité de Sobolev sur les variétés riemanniennes, Bull. Sci. Math. (2), 103 (1979), 353-374. Google Scholar

[22]

J. Demange, Improved Gagliardo-Nirenberg-Sobolev inequalities on manifolds with positive curvature, J. Funct. Anal., 254 (2008), 593-611. doi: 10.1016/j.jfa.2007.01.017. Google Scholar

[23]

J. Dolbeault and M. J. Esteban, Branches of non-symmetric critical points and symmetry breaking in nonlinear elliptic partial differential equations, Nonlinearity, 27 (2014), 435-465. doi: 10.1088/0951-7715/27/3/435. Google Scholar

[24]

J. DolbeaultM. J. Esteban and G. Jankowiak, The Moser-Trudinger-Onofri inequality, Chinese Annals of Math. B, 36 (2015), 777-802. doi: 10.1007/s11401-015-0976-7. Google Scholar

[25]

J. DolbeaultM. J. EstebanM. Kowalczyk and M. Loss, Improved interpolation inequalities on the sphere, Discrete and Continuous Dynamical Systems Series S (DCDS-S), 7 (2014), 695-724. doi: 10.3934/dcdss.2014.7.695. Google Scholar

[26]

J. DolbeaultM. J. Esteban and M. Loss, Nonlinear flows and rigidity results on compact manifolds, Journal of Functional Analysis, 267 (2014), 1338-1363. doi: 10.1016/j.jfa.2014.05.021. Google Scholar

[27]

Z. Faget, Best constants in the exceptional case of Sobolev inequalities, Math. Z., 252 (2006), 133-146. doi: 10.1007/s00209-005-0850-5. Google Scholar

[28]

Z. Faget, Optimal constants in the exceptional case of Sobolev inequalities on Riemannian manifolds, Trans. Amer. Math. Soc., 360 (2008), 2303-2325. doi: 10.1090/S0002-9947-07-04308-5. Google Scholar

[29]

É. Fontenas, Sur les constantes de Sobolev des variétés riemanniennes compactes et les fonctions extrémales des sphéres, Bull. Sci. Math., 121 (1997), 71-96. Google Scholar

[30]

A. Ghigi, On the Moser-Onofri and Prékopa-Leindler inequalities, Collect. Math., 56 (2005), 143-156. Google Scholar

[31]

N. Ghoussoub and A. Moradifam, Functional Inequalities: New Perspectives and New Applications vol. 187 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2013. doi: 10.1090/surv/187. Google Scholar

[32]

B. GidasW. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in ${\mathbb{R}^n} $, in Mathematical analysis and applications, Part A, vol. 7 of Adv. in Math. Suppl. Stud., Academic Press, New York-London, (1981), 369-402. Google Scholar

[33]

E. Hebey, Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities vol. 5 of Courant Lecture Notes in Mathematics, New York University Courant Institute of Mathematical Sciences, New York, 1999. Google Scholar

[34]

C. W. Hong, A best constant and the Gaussian curvature, Proc. Amer. Math. Soc., 97 (1986), 737-747. doi: 10.1090/S0002-9939-1986-0845999-7. Google Scholar

[35]

Y. Y. Li, Harnack type inequality: The method of moving planes, Comm. Math. Phys., 200 (1999), 421-444. doi: 10.1007/s002200050536. Google Scholar

[36]

A. Lichnerowicz, Géométrie des Groupes de Transformations Travaux et Recherches Mathématiques, Ⅲ. Dunod, Paris, 1958. Google Scholar

[37]

J. R. Licois and L. Véron, Un théoréme d'annulation pour des équations elliptiques non linéaires sur des variétés riemanniennes compactes, C. R. Acad. Sci. Paris Sér. I Math., 320 (1995), 1337-1342. Google Scholar

[38]

J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970/71), 1077-1092. doi: 10.1512/iumj.1971.20.20101. Google Scholar

[39]

Y. NaitoT. Suzuki and K. Yoshida, Self-similar solutions to a parabolic system modeling chemotaxis, J. Differential Equations, 184 (2002), 386-421. doi: 10.1006/jdeq.2001.4146. Google Scholar

[40]

M. Nolasco and G. Tarantello, On a sharp Sobolev-type inequality on two-dimensional compact manifolds, Arch. Ration. Mech. Anal., 145 (1998), 161-195. doi: 10.1007/s002050050127. Google Scholar

[41]

E. Onofri, On the positivity of the effective action in a theory of random surfaces, Comm. Math. Phys., 86 (1982), 321-326. doi: 10.1007/BF01212171. Google Scholar

[42]

B. OsgoodR. Phillips and P. Sarnak, Extremals of determinants of Laplacians, J. Funct. Anal., 80 (1988), 148-211. doi: 10.1016/0022-1236(88)90070-5. Google Scholar

[43]

D. H. PhongJ. SongJ. Sturm and B. Weinkove, The Moser-Trudinger inequality on Kähler-Einstein manifolds, American Journal of Mathematics, 130 (2008), 1067-1085. doi: 10.1353/ajm.0.0013. Google Scholar

[44]

Y. A. Rubinstein, On energy functionals, Kähler-Einstein metrics, and the Moser-Trudinger-Onofri neighborhood, J. Funct. Anal., 255 (2008), 2641-2660. doi: 10.1016/j.jfa.2007.10.009. Google Scholar

[45]

Y. A. Rubinstein, Some discretizations of geometric evolution equations and the Ricci iteration on the space of Kähler metrics, Adv. Math., 218 (2008), 1526-1565. doi: 10.1016/j.aim.2008.03.017. Google Scholar

[46]

G. Tarantello, Selfdual Gauge Field Vortices: An Analytical Approach Progress in Nonlinear Differential Equations and their Applications, 72, Birkhäuser Boston, Inc. , Boston, MA, 2008. doi: 10.1007/978-0-8176-4608-0. Google Scholar

[47]

G. Tian and X. Zhu, A nonlinear inequality of Moser-Trudinger type, Calculus of Variations and Partial Differential Equations, 10 (2000), 349-354. doi: 10.1007/s005260010349. Google Scholar

[48]

N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-483. Google Scholar

[1]

A. M. Micheletti, Angela Pistoia. Multiple eigenvalues of the Laplace-Beltrami operator and deformation of the Riemannian metric. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 709-720. doi: 10.3934/dcds.1998.4.709

[2]

Guozhen Lu, Yunyan Yang. Sharp constant and extremal function for the improved Moser-Trudinger inequality involving $L^p$ norm in two dimension. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 963-979. doi: 10.3934/dcds.2009.25.963

[3]

YanYan Li, Tonia Ricciardi. A sharp Sobolev inequality on Riemannian manifolds. Communications on Pure & Applied Analysis, 2003, 2 (1) : 1-31. doi: 10.3934/cpaa.2003.2.1

[4]

Anouar Bahrouni. Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity. Communications on Pure & Applied Analysis, 2017, 16 (1) : 243-252. doi: 10.3934/cpaa.2017011

[5]

Changliang Zhou, Chunqin Zhou. Extremal functions of Moser-Trudinger inequality involving Finsler-Laplacian. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2309-2328. doi: 10.3934/cpaa.2018110

[6]

Xumin Wang. Singular Hardy-Trudinger-Moser inequality and the existence of extremals on the unit disc. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2717-2733. doi: 10.3934/cpaa.2019121

[7]

Prosenjit Roy. On attainability of Moser-Trudinger inequality with logarithmic weights in higher dimensions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5207-5222. doi: 10.3934/dcds.2019212

[8]

Micol Amar, Roberto Gianni. Laplace-Beltrami operator for the heat conduction in polymer coating of electronic devices. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1739-1756. doi: 10.3934/dcdsb.2018078

[9]

Tomasz Cieślak. Trudinger-Moser type inequality for radially symmetric functions in a ring and applications to Keller-Segel in a ring. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2505-2512. doi: 10.3934/dcdsb.2013.18.2505

[10]

Jianqing Chen. Best constant of 3D Anisotropic Sobolev inequality and its applications. Communications on Pure & Applied Analysis, 2010, 9 (3) : 655-666. doi: 10.3934/cpaa.2010.9.655

[11]

Igor E. Verbitsky. The Hessian Sobolev inequality and its extensions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6165-6179. doi: 10.3934/dcds.2015.35.6165

[12]

Boumediene Abdellaoui, Fethi Mahmoudi. An improved Hardy inequality for a nonlocal operator. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1143-1157. doi: 10.3934/dcds.2016.36.1143

[13]

Andrea Bonito, Roland Glowinski. On the nodal set of the eigenfunctions of the Laplace-Beltrami operator for bounded surfaces in $R^3$: A computational approach. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2115-2126. doi: 10.3934/cpaa.2014.13.2115

[14]

Wen Wang, Dapeng Xie, Hui Zhou. Local Aronson-Bénilan gradient estimates and Harnack inequality for the porous medium equation along Ricci flow. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1957-1974. doi: 10.3934/cpaa.2018093

[15]

Ze Cheng, Congming Li. An extended discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1951-1959. doi: 10.3934/dcds.2014.34.1951

[16]

Hubert L. Bray, Marcus A. Khuri. A Jang equation approach to the Penrose inequality. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 741-766. doi: 10.3934/dcds.2010.27.741

[17]

Saikat Mazumdar. Struwe's decomposition for a polyharmonic operator on a compact Riemannian manifold with or without boundary. Communications on Pure & Applied Analysis, 2017, 16 (1) : 311-330. doi: 10.3934/cpaa.2017015

[18]

Jinggang Tan, Jingang Xiong. A Harnack inequality for fractional Laplace equations with lower order terms. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 975-983. doi: 10.3934/dcds.2011.31.975

[19]

Giuseppe Di Fazio, Maria Stella Fanciullo, Pietro Zamboni. Harnack inequality for degenerate elliptic equations and sum operators. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2363-2376. doi: 10.3934/cpaa.2015.14.2363

[20]

Jean Dolbeault, Marta García-Huidobro, Rául Manásevich. Interpolation inequalities in $ \mathrm W^{1,p}( {\mathbb S}^1) $ and carré du champ methods. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 375-394. doi: 10.3934/dcds.2020014

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (22)
  • HTML views (4)
  • Cited by (1)

[Back to Top]