# American Institute of Mathematical Sciences

May  2017, 37(5): 2881-2897. doi: 10.3934/dcds.2017124

## Persistence and stationary distribution of a stochastic predator-prey model under regime switching

 1 College of Mathematics and Statistics, Hainan Normal University, Hainan 571158, China 2 School of Science, China University of Petroleum (East China), Qingdao 266580, China 3 Nonlinear Analysis and Applied Mathematics(NAAM)-Research Group, King Abdulaziz University, Jeddah, Saudi Arabia 4 School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland

* Corresponding author: Daqing Jiang (School of Science, China University of Petroleum (East China), Qingdao), China E-mail: daqingjiang2010@hotmail.com, Tel.: +86 43185099589; fax: +86 43185098237

Received  October 2014 Revised  January 2017 Published  February 2017

Fund Project: The first author is supported by NSFC of China (No: 11601038), the second author is supported by NSFC of China (No: 11371085) and the Fundamental Research Funds for the Central Universities (No: 15CX08011A).

Taking both white noise and colored environment noise into account, a predator-prey model is proposed. In this paper, our main aim is to study the stationary distribution of the solution and obtain the threshold between persistence in mean and the extinction of the stochastic system with regime switching. Some simulation figures are presented to support the analytical findings.

Citation: Li Zu, Daqing Jiang, Donal O'Regan. Persistence and stationary distribution of a stochastic predator-prey model under regime switching. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2881-2897. doi: 10.3934/dcds.2017124
##### References:

show all references

##### References:
The curves on the subgraphs (a) and (b) are the density functions of x(t) and y(t) in k = 1, k = 2, respectively. The white noise intensity on x(t) and y(t) are all relatively small.
The subgraphs (a) and (b) denote sample phase portrait of stochastic system and the corresponding deterministic system. The red, blue and black area denote x(t), y(t) in k = 1, k = 2 and converting between the above two states, respectively. The white noise intensity on x(t) and y(t) are all relatively small.
The subgraphs (a) and (b) have the same definitions as in Fig.2. The white noise intensity on x(t) and y(t) are all relatively big.
 [1] Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129 [2] Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507 [3] Nguyen Huu Du, Nguyen Thanh Dieu, Tran Dinh Tuong. Dynamic behavior of a stochastic predator-prey system under regime switching. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3483-3498. doi: 10.3934/dcdsb.2017176 [4] Gianni Gilioli, Sara Pasquali, Fabrizio Ruggeri. Nonlinear functional response parameter estimation in a stochastic predator-prey model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 75-96. doi: 10.3934/mbe.2012.9.75 [5] Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Amelia G. Nobile. A non-autonomous stochastic predator-prey model. Mathematical Biosciences & Engineering, 2014, 11 (2) : 167-188. doi: 10.3934/mbe.2014.11.167 [6] Guanqi Liu, Yuwen Wang. Stochastic spatiotemporal diffusive predator-prey systems. Communications on Pure & Applied Analysis, 2018, 17 (1) : 67-84. doi: 10.3934/cpaa.2018005 [7] Hongxiao Hu, Liguang Xu, Kai Wang. A comparison of deterministic and stochastic predator-prey models with disease in the predator. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2837-2863. doi: 10.3934/dcdsb.2018289 [8] Peng Feng. On a diffusive predator-prey model with nonlinear harvesting. Mathematical Biosciences & Engineering, 2014, 11 (4) : 807-821. doi: 10.3934/mbe.2014.11.807 [9] Ronald E. Mickens. Analysis of a new class of predator-prey model. Conference Publications, 2001, 2001 (Special) : 265-269. doi: 10.3934/proc.2001.2001.265 [10] Xiaoling Li, Guangping Hu, Zhaosheng Feng, Dongliang Li. A periodic and diffusive predator-prey model with disease in the prey. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 445-461. doi: 10.3934/dcdss.2017021 [11] Yang Lu, Xia Wang, Shengqiang Liu. A non-autonomous predator-prey model with infected prey. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3817-3836. doi: 10.3934/dcdsb.2018082 [12] Sílvia Cuadrado. Stability of equilibria of a predator-prey model of phenotype evolution. Mathematical Biosciences & Engineering, 2009, 6 (4) : 701-718. doi: 10.3934/mbe.2009.6.701 [13] Shanshan Chen. Nonexistence of nonconstant positive steady states of a diffusive predator-prey model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 477-485. doi: 10.3934/cpaa.2018026 [14] Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057 [15] Haiying Jing, Zhaoyu Yang. The impact of state feedback control on a predator-prey model with functional response. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 607-614. doi: 10.3934/dcdsb.2004.4.607 [16] Wenshu Zhou, Hongxing Zhao, Xiaodan Wei, Guokai Xu. Existence of positive steady states for a predator-prey model with diffusion. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2189-2201. doi: 10.3934/cpaa.2013.12.2189 [17] Antoni Leon Dawidowicz, Anna Poskrobko. Stability problem for the age-dependent predator-prey model. Evolution Equations & Control Theory, 2018, 7 (1) : 79-93. doi: 10.3934/eect.2018005 [18] Liang Zhang, Zhi-Cheng Wang. Spatial dynamics of a diffusive predator-prey model with stage structure. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1831-1853. doi: 10.3934/dcdsb.2015.20.1831 [19] H. W. Broer, K. Saleh, V. Naudot, R. Roussarie. Dynamics of a predator-prey model with non-monotonic response function. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 221-251. doi: 10.3934/dcds.2007.18.221 [20] Xiaoying Wang, Xingfu Zou. On a two-patch predator-prey model with adaptive habitancy of predators. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 677-697. doi: 10.3934/dcdsb.2016.21.677

2018 Impact Factor: 1.143