• Previous Article
    Existence and uniqueness of positive solutions for a class of logistic type elliptic equations in $\mathbb{R}^N$ involving fractional Laplacian
  • DCDS Home
  • This Issue
  • Next Article
    Multidimensional stability of time-periodic planar traveling fronts in bistable reaction-diffusion equations
May  2017, 37(5): 2669-2680. doi: 10.3934/dcds.2017114

Equivalent formulations for steady periodic water waves of fixed mean-depth with discontinuous vorticity

Departamento de Matemática, Universidade Federal de Pernambuco, Av. Jornalista Aníbal Fernandes, Recife, Pernambuco, Brazil

*The author is supported by Science Foundation Ireland (SFI) under the grant 13/CDA/2117

Received  June 2016 Revised  December 2016 Published  February 2017

Fund Project: The author is supported by Science Foundation Ireland (SFI) under the grant 13/CDA/2117

In this work we prove the equivalence between three different weak formulations of the steady periodic water wave problem where the vorticity is discontinuous. In particular, we prove that generalised versions of the standard Euler and stream function formulation of the governing equations are equivalent to a weak version of the recently introduced modified-height formulation. The weak solutions of these formulations are considered in Hölder spaces.

Citation: Silvia Sastre-Gomez. Equivalent formulations for steady periodic water waves of fixed mean-depth with discontinuous vorticity. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2669-2680. doi: 10.3934/dcds.2017114
References:
[1]

A. Constantin, Nonlinear water waves with applications to wave-current interactions and tsunamis, CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 81 (2011), xii+315. doi: 10.1137/1.9781611971873.

[2]

A. Constantin, Dispersion relations for periodic traveling water waves in flows with discontinuous vorticity, Commun. Pure Appl. Anal., 11 (2012), 1397-1406. doi: 10.3934/cpaa.2012.11.1397.

[3]

A. Constantin, The flow beneath a periodic travelling surface water wave, J. Phys. A: Math. Theor., 48 (2015), 1397-143001(25pp). doi: 10.1088/1751-8113/48/14/143001.

[4]

A. Constantin and J. Escher, Symmetry of steady deep-water waves with vorticity, European J. Appl. Math., 15 (2004), 755-768. doi: 10.1017/S0956792504005777.

[5]

A. Constantin and J. Escher, Symmetry of steady periodic surface water waves with vorticity, J. Fluid Mech., 498 (2004), 171-181. doi: 10.1017/S0022112003006773.

[6]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math., 173 (2011), 559-568. doi: 10.4007/annals.2011.173.1.12.

[7]

A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity, Comm. Pure Appl. Math., 57 (2004), 481-527. doi: 10.1002/cpa.3046.

[8]

A. Constantin and W. Strauss, Periodic traveling gravity water waves with discontinuous vorticity, Arch. Ration. Mech. Anal., 202 (2011), 133-175. doi: 10.1007/s00205-011-0412-4.

[9]

A. Constantin and E. Varvaruca, Steady periodic water waves with constant vorticity: Regularity and local bifurcation, Arch. Ration. Mech. Anal., 199 (2011), 33-67. doi: 10.1007/s00205-010-0314-x.

[10]

M.-L. Dubreil-Jacotin, Sur la détermination rigoureuse des ondes permanentes périodiques d'ampleur finie, Journal de Mathématiques Pures et Appliquées, 13 (1934), 217-291.

[11]

J. Escher and B. V. Matioc, On the analyticity of periodic gravity water waves with integrable vorticity function, Differential Integral Equations, 27 (2014), 217-232.

[12]

J. EscherA. V. Matioc and B. V. Matioc, On stratified steady periodic water waves with linear density distribution and stagnation points, J. Differential Equations, 251 (2011), 2932-2949. doi: 10.1016/j.jde.2011.03.023.

[13]

D. Henry, Dispersion relations for steady periodic water waves of fixed mean-depth with an isolated bottom vorticity layer, J. Nonlinear Math. Phys., 19 (2012), 1240007(14 pp). doi: 10.1142/S1402925112400074.

[14]

D. Henry, Regularity for steady periodic capillary water waves with vorticity, Philos. Trans. R. Soc. Lond. A., 370 (2012), 1616-1628. doi: 10.1098/rsta.2011.0449.

[15]

D. Henry, Dispersion relations for steady periodic water waves with an isolated layer of vorticity at the surface, Nonlinear Anal. Real World Appl., 14 (2013), 1034-1043. doi: 10.1016/j.nonrwa.2012.08.015.

[16]

D. Henry, Large amplitude steady periodic waves for fixed-depth rotational flows, Comm. Partial Differential Equations, 38 (2013), 1015-1037. doi: 10.1080/03605302.2012.734889.

[17]

D. Henry, Steady periodic waves bifurcating for fixed-depth rotational flows, Quart. Appl. Math., 71 (2013), 455-487. doi: 10.1090/S0033-569X-2013-01293-8.

[18]

D. Henry and A. V. Matioc, Global bifurcation of capillary-gravity-stratified water waves, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 775-786. doi: 10.1017/S0308210512001990.

[19]

D. Henry and B. V. Matioc, On the regularity of steady periodic stratified water waves, Comm. Pure Appl. Anal., 11 (2012), 1453-1464.

[20]

D. Henry and B. V. Matioc, On the existence of steady periodic capillary-gravity stratified water waves, Ann. Sc. Norm. Super. Pisa Cl. Sci., 12 (2013), 955-974.

[21]

D. Henry and B. V. Matioc, Aspects of the mathematical analysis of nonlinear stratified water waves, Elliptic and parabolic equations, Springer Proc. Math. Stat., Springer, Cham, 119 (2015), 159-177. doi: 10.1007/978-3-319-12547-3_7.

[22]

D. Henry and S. Sastre-Gomez, Steady Periodic Waver Waves Bifurcating for Fixed-Depth Rotational Flows with Discontinuous Vorticity, Differential and Integral Equations, 2017.

[23] R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1997. doi: 10.1017/CBO9780511624056.
[24]

J. Ko and W. Strauss, Effect of vorticity on steady water waves, J. Fluid Mech., 608 (2008), 197-215. doi: 10.1017/S0022112008002371.

[25]

M. J. Lighthill, Waves in fluids, View issue TOC, 20 (1967), 267-293. doi: 10.1002/cpa.3160200204.

[26]

C. I. Martin and B. V. Matioc, Existence of capillary-gravity water waves with piecewise constant vorticity, J. Differential Equations, 256 (2014), 3086-3114. doi: 10.1016/j.jde.2014.01.036.

[27]

C. I. Martin and B. V. Matioc, Steady periodic water waves with unbounded vorticity: Equivalent formulations and existence results, J. Nonlinear Sci., 24 (2014), 633-659. doi: 10.1007/s00332-014-9201-1.

[28]

A. V. Matioc and B. V. Matioc, Capillary-gravity water waves with discontinuous vorticity: Existence and regularity results, Comm. Math. Phys., 330 (2014), 859-886. doi: 10.1007/s00220-014-1918-z.

[29]

O. M. Phillips and M. L. Banner, Wave breaking in the presence of wind drift and swell, Journal of Fluid Mechanics, 66 (1974), 625-640. doi: 10.1017/S0022112074000413.

[30]

G. Thomas and G. Klopman, Wave-current interactions in the nearshore region, gravity waves in water of finite depth, Advances in Fluid Mechanics, 10 (1997), 215-319.

[31]

J. F. Toland, Stokes waves, Topol. Methods Nonlinear Anal., 7 (1996), 1-48.

[32]

E. Varvaruca, On the existence of extreme waves and the {S}tokes conjecture with vorticity, J. Differential Equations, 246 (2009), 4043-4076. doi: 10.1016/j.jde.2008.12.018.

[33]

E. Varvaruca and G. S. Weiss, A geometric approach to generalized {S}tokes conjectures, Acta Math., 206 (2011), 363-403. doi: 10.1007/s11511-011-0066-y.

[34]

E. Varvaruca and A. Zarnescu, Equivalence of weak formulations of the steady water waves equations, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 370 (2012), 1703-1719. doi: 10.1098/rsta.2011.0455.

[35]

E. Wahlén, Steady periodic capillary-gravity waves with vorticity, SIAM J. Math. Anal., 38 (2006), 921-943.

[36]

E. Wahlén, Steady water waves with a critical layer, J. Differential Equations, 246 (2009), 2468-2483.

[37]

S. Walsh, Stratified steady periodic water waves, SIAM J. Math. Anal., 41 (2009), 1054-1105. doi: 10.1137/080721583.

show all references

References:
[1]

A. Constantin, Nonlinear water waves with applications to wave-current interactions and tsunamis, CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 81 (2011), xii+315. doi: 10.1137/1.9781611971873.

[2]

A. Constantin, Dispersion relations for periodic traveling water waves in flows with discontinuous vorticity, Commun. Pure Appl. Anal., 11 (2012), 1397-1406. doi: 10.3934/cpaa.2012.11.1397.

[3]

A. Constantin, The flow beneath a periodic travelling surface water wave, J. Phys. A: Math. Theor., 48 (2015), 1397-143001(25pp). doi: 10.1088/1751-8113/48/14/143001.

[4]

A. Constantin and J. Escher, Symmetry of steady deep-water waves with vorticity, European J. Appl. Math., 15 (2004), 755-768. doi: 10.1017/S0956792504005777.

[5]

A. Constantin and J. Escher, Symmetry of steady periodic surface water waves with vorticity, J. Fluid Mech., 498 (2004), 171-181. doi: 10.1017/S0022112003006773.

[6]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math., 173 (2011), 559-568. doi: 10.4007/annals.2011.173.1.12.

[7]

A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity, Comm. Pure Appl. Math., 57 (2004), 481-527. doi: 10.1002/cpa.3046.

[8]

A. Constantin and W. Strauss, Periodic traveling gravity water waves with discontinuous vorticity, Arch. Ration. Mech. Anal., 202 (2011), 133-175. doi: 10.1007/s00205-011-0412-4.

[9]

A. Constantin and E. Varvaruca, Steady periodic water waves with constant vorticity: Regularity and local bifurcation, Arch. Ration. Mech. Anal., 199 (2011), 33-67. doi: 10.1007/s00205-010-0314-x.

[10]

M.-L. Dubreil-Jacotin, Sur la détermination rigoureuse des ondes permanentes périodiques d'ampleur finie, Journal de Mathématiques Pures et Appliquées, 13 (1934), 217-291.

[11]

J. Escher and B. V. Matioc, On the analyticity of periodic gravity water waves with integrable vorticity function, Differential Integral Equations, 27 (2014), 217-232.

[12]

J. EscherA. V. Matioc and B. V. Matioc, On stratified steady periodic water waves with linear density distribution and stagnation points, J. Differential Equations, 251 (2011), 2932-2949. doi: 10.1016/j.jde.2011.03.023.

[13]

D. Henry, Dispersion relations for steady periodic water waves of fixed mean-depth with an isolated bottom vorticity layer, J. Nonlinear Math. Phys., 19 (2012), 1240007(14 pp). doi: 10.1142/S1402925112400074.

[14]

D. Henry, Regularity for steady periodic capillary water waves with vorticity, Philos. Trans. R. Soc. Lond. A., 370 (2012), 1616-1628. doi: 10.1098/rsta.2011.0449.

[15]

D. Henry, Dispersion relations for steady periodic water waves with an isolated layer of vorticity at the surface, Nonlinear Anal. Real World Appl., 14 (2013), 1034-1043. doi: 10.1016/j.nonrwa.2012.08.015.

[16]

D. Henry, Large amplitude steady periodic waves for fixed-depth rotational flows, Comm. Partial Differential Equations, 38 (2013), 1015-1037. doi: 10.1080/03605302.2012.734889.

[17]

D. Henry, Steady periodic waves bifurcating for fixed-depth rotational flows, Quart. Appl. Math., 71 (2013), 455-487. doi: 10.1090/S0033-569X-2013-01293-8.

[18]

D. Henry and A. V. Matioc, Global bifurcation of capillary-gravity-stratified water waves, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 775-786. doi: 10.1017/S0308210512001990.

[19]

D. Henry and B. V. Matioc, On the regularity of steady periodic stratified water waves, Comm. Pure Appl. Anal., 11 (2012), 1453-1464.

[20]

D. Henry and B. V. Matioc, On the existence of steady periodic capillary-gravity stratified water waves, Ann. Sc. Norm. Super. Pisa Cl. Sci., 12 (2013), 955-974.

[21]

D. Henry and B. V. Matioc, Aspects of the mathematical analysis of nonlinear stratified water waves, Elliptic and parabolic equations, Springer Proc. Math. Stat., Springer, Cham, 119 (2015), 159-177. doi: 10.1007/978-3-319-12547-3_7.

[22]

D. Henry and S. Sastre-Gomez, Steady Periodic Waver Waves Bifurcating for Fixed-Depth Rotational Flows with Discontinuous Vorticity, Differential and Integral Equations, 2017.

[23] R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1997. doi: 10.1017/CBO9780511624056.
[24]

J. Ko and W. Strauss, Effect of vorticity on steady water waves, J. Fluid Mech., 608 (2008), 197-215. doi: 10.1017/S0022112008002371.

[25]

M. J. Lighthill, Waves in fluids, View issue TOC, 20 (1967), 267-293. doi: 10.1002/cpa.3160200204.

[26]

C. I. Martin and B. V. Matioc, Existence of capillary-gravity water waves with piecewise constant vorticity, J. Differential Equations, 256 (2014), 3086-3114. doi: 10.1016/j.jde.2014.01.036.

[27]

C. I. Martin and B. V. Matioc, Steady periodic water waves with unbounded vorticity: Equivalent formulations and existence results, J. Nonlinear Sci., 24 (2014), 633-659. doi: 10.1007/s00332-014-9201-1.

[28]

A. V. Matioc and B. V. Matioc, Capillary-gravity water waves with discontinuous vorticity: Existence and regularity results, Comm. Math. Phys., 330 (2014), 859-886. doi: 10.1007/s00220-014-1918-z.

[29]

O. M. Phillips and M. L. Banner, Wave breaking in the presence of wind drift and swell, Journal of Fluid Mechanics, 66 (1974), 625-640. doi: 10.1017/S0022112074000413.

[30]

G. Thomas and G. Klopman, Wave-current interactions in the nearshore region, gravity waves in water of finite depth, Advances in Fluid Mechanics, 10 (1997), 215-319.

[31]

J. F. Toland, Stokes waves, Topol. Methods Nonlinear Anal., 7 (1996), 1-48.

[32]

E. Varvaruca, On the existence of extreme waves and the {S}tokes conjecture with vorticity, J. Differential Equations, 246 (2009), 4043-4076. doi: 10.1016/j.jde.2008.12.018.

[33]

E. Varvaruca and G. S. Weiss, A geometric approach to generalized {S}tokes conjectures, Acta Math., 206 (2011), 363-403. doi: 10.1007/s11511-011-0066-y.

[34]

E. Varvaruca and A. Zarnescu, Equivalence of weak formulations of the steady water waves equations, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 370 (2012), 1703-1719. doi: 10.1098/rsta.2011.0455.

[35]

E. Wahlén, Steady periodic capillary-gravity waves with vorticity, SIAM J. Math. Anal., 38 (2006), 921-943.

[36]

E. Wahlén, Steady water waves with a critical layer, J. Differential Equations, 246 (2009), 2468-2483.

[37]

S. Walsh, Stratified steady periodic water waves, SIAM J. Math. Anal., 41 (2009), 1054-1105. doi: 10.1137/080721583.

[1]

Adrian Constantin. Dispersion relations for periodic traveling water waves in flows with discontinuous vorticity. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1397-1406. doi: 10.3934/cpaa.2012.11.1397

[2]

Calin Iulian Martin. Dispersion relations for periodic water waves with surface tension and discontinuous vorticity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3109-3123. doi: 10.3934/dcds.2014.34.3109

[3]

Calin Iulian Martin, Adrián Rodríguez-Sanjurjo. Dispersion relations for steady periodic water waves of fixed mean-depth with two rotational layers. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5149-5169. doi: 10.3934/dcds.2019209

[4]

Walter A. Strauss. Vorticity jumps in steady water waves. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1101-1112. doi: 10.3934/dcdsb.2012.17.1101

[5]

Zaiyun Peng, Xinmin Yang, Kok Lay Teo. On the Hölder continuity of approximate solution mappings to parametric weak generalized Ky Fan Inequality. Journal of Industrial & Management Optimization, 2015, 11 (2) : 549-562. doi: 10.3934/jimo.2015.11.549

[6]

Jifeng Chu, Joachim Escher. Steady periodic equatorial water waves with vorticity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4713-4729. doi: 10.3934/dcds.2019191

[7]

Rafael De La Llave, R. Obaya. Regularity of the composition operator in spaces of Hölder functions. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 157-184. doi: 10.3934/dcds.1999.5.157

[8]

Shu-Ming Sun. Existence theory of capillary-gravity waves on water of finite depth. Mathematical Control & Related Fields, 2014, 4 (3) : 315-363. doi: 10.3934/mcrf.2014.4.315

[9]

Mats Ehrnström. Deep-water waves with vorticity: symmetry and rotational behaviour. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 483-491. doi: 10.3934/dcds.2007.19.483

[10]

Lucio Boccardo, Alessio Porretta. Uniqueness for elliptic problems with Hölder--type dependence on the solution. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1569-1585. doi: 10.3934/cpaa.2013.12.1569

[11]

Alexander I. Bufetov. Hölder cocycles and ergodic integrals for translation flows on flat surfaces. Electronic Research Announcements, 2010, 17: 34-42. doi: 10.3934/era.2010.17.34

[12]

Delia Ionescu-Kruse. Elliptic and hyperelliptic functions describing the particle motion beneath small-amplitude water waves with constant vorticity. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1475-1496. doi: 10.3934/cpaa.2012.11.1475

[13]

Delia Ionescu-Kruse, Anca-Voichita Matioc. Small-amplitude equatorial water waves with constant vorticity: Dispersion relations and particle trajectories. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3045-3060. doi: 10.3934/dcds.2014.34.3045

[14]

Denys Dutykh, Delia Ionescu-Kruse. Effects of vorticity on the travelling waves of some shallow water two-component systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5521-5541. doi: 10.3934/dcds.2019225

[15]

Charles Pugh, Michael Shub, Amie Wilkinson. Hölder foliations, revisited. Journal of Modern Dynamics, 2012, 6 (1) : 79-120. doi: 10.3934/jmd.2012.6.79

[16]

Jinpeng An. Hölder stability of diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 315-329. doi: 10.3934/dcds.2009.24.315

[17]

G. A. Athanassoulis, K. A. Belibassakis. New evolution equations for non-linear water waves in general bathymetry with application to steady travelling solutions in constant, but arbitrary, depth. Conference Publications, 2007, 2007 (Special) : 75-84. doi: 10.3934/proc.2007.2007.75

[18]

Russell Johnson, Mahesh G. Nerurkar. On $SL(2, R)$ valued cocycles of Hölder class with zero exponent over Kronecker flows. Communications on Pure & Applied Analysis, 2011, 10 (3) : 873-884. doi: 10.3934/cpaa.2011.10.873

[19]

Angelo Favini, Rabah Labbas, Stéphane Maingot, Hiroki Tanabe, Atsushi Yagi. Necessary and sufficient conditions for maximal regularity in the study of elliptic differential equations in Hölder spaces. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 973-987. doi: 10.3934/dcds.2008.22.973

[20]

Wenning Wei. On the Cauchy-Dirichlet problem in a half space for backward SPDEs in weighted Hölder spaces. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5353-5378. doi: 10.3934/dcds.2015.35.5353

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (16)
  • HTML views (6)
  • Cited by (1)

Other articles
by authors

[Back to Top]