# American Institute of Mathematical Sciences

April  2017, 37(4): 2207-2226. doi: 10.3934/dcds.2017095

## Multiple solutions with constant sign of a Dirichlet problem for a class of elliptic systems with variable exponent growth

 1 College of Information and Management Science, Henan Agricultural University, Zhengzhou, Henan 450002, China 2 Department of Mathematics, Indiana University, Bloomington, IN 47408, USA 3 Department of Mathematics and Information Science, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China 4 Department of Mathematical Science, Georgia Southern University, Statesboro, GA 30460, USA

*Corresponding author: Jinghua Yao

Received  July 2016 Revised  September 2016 Published  December 2016

Fund Project: This research is partly supported by the key projects in Science and Technology Research of the Henan Education Department (14A110011).

We investigate the followingDirichlet problem with variable exponents:
 \left\{ \begin{align} &-{{\vartriangle }_{p(x)}}u=\lambda \alpha (x)|u{{\text{ }\!\!|\!\!\text{ }}^{\alpha (x)-2}}u|v{{\text{ }\!\!|\!\!\text{ }}^{\beta (x)}}+{{F}_{u}}(x,u,v),\text{ in }\Omega , \\ &-{{\vartriangle }_{q(x)}}v=\lambda \beta (x)\text{ }\!\!|\!\!\text{ }u{{|}^{\alpha \left( x \right)}}|v{{|}^{\beta (x)\text{-2}}}v+{{F}_{v}}(x,u,v),\text{ in}\ \Omega , \\ &u=0=v,\text{ on }\partial \Omega \text{.} \\ \end{align} \right.
We present here, in the system setting, a new set of growth conditions under which we manage to use a novel method to verify the Cerami compactness condition. By localization argument, decomposition technique and variational methods, we are able to show the existence of multiple solutions with constant sign for the problem without the well-knownAmbrosetti-Rabinowitz type growth condition. More precisely, we manage to show that the problem admitsfour, six and infinitely many solutions respectively.
Citation: Li Yin, Jinghua Yao, Qihu Zhang, Chunshan Zhao. Multiple solutions with constant sign of a Dirichlet problem for a class of elliptic systems with variable exponent growth. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2207-2226. doi: 10.3934/dcds.2017095
##### References:
 [1] E. Acerbi and G. Mingione, Regularity results for a class of functionals with nonstandard growth, Arch. Ration. Mech. Anal., 156 (2001), 121-140. doi: 10.1007/s002050100117. Google Scholar [2] C. Alves and S. Liu, On superlinear $p(x)$-Laplacian equations in $R^{N}$, Nonlinear Analysis, 73 (2010), 2566-2579. doi: 10.1016/j.na.2010.06.033. Google Scholar [3] K. C. Chang, Critical Point Theory and Applications, Shanghai Scientific and Technology Press, Shanghai, 1986. Google Scholar [4] Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383-1406. doi: 10.1137/050624522. Google Scholar [5] L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, Berlin, 2011. doi: 10.1007/978-3-642-18363-8. Google Scholar [6] X. Fan and D. Zhao, On the spaces ${{L}^{p(x)}}(\Omega \text{)}$ and ${{W}^{m,p(x)}}\left( \Omega \right)$, J. Math. Anal. Appl., 263 (2001), 424-446. doi: 10.1006/jmaa.2000.7617. Google Scholar [7] X. Fan and Q. Zhang, Existence of solutions for $p(x)$-Laplacian Dirichlet problem, Nonlinear Anal., 52 (2003), 1843-1852. doi: 10.1016/S0362-546X(02)00150-5. Google Scholar [8] X. Fan, Q. Zhang and D. Zhao, Eigenvalues of $p(x)$-Laplacian Dirichlet problem, J. Math. Anal. Appl., 302 (2005), 306-317. doi: 10.1016/j.jmaa.2003.11.020. Google Scholar [9] L. Gasiński and N. Papageorgiou, A pair of positive solutions for the Dirichlet $p(z)$-Laplacian with concave and convex nonlinearities, J. Glob. Optim., 56 (2013), 1347-1360. doi: 10.1007/s10898-011-9841-8. Google Scholar [10] B. Ge, Q. Zhou and L. Zu, Positive solutions for nonlinear elliptic problems of $p$-Laplacian type on $\mathbb{R}^{N}$ without (AR) condition, Nonlinear Anal Real World Appl., 21 (2015), 99-109. doi: 10.1016/j.nonrwa.2014.07.002. Google Scholar [11] O. Kováčik and J. Rákosník, On spaces ${{L}^{p(x)}}\left( \Omega \right)$ and ${{W}^{k,p(x)}}\left( \Omega \right)$, Czechoslovak Math. J., 41 (1991), 592-618. Google Scholar [12] N. Lam and G. Lu, Elliptic equations and systems with subcritical and critical exponential growth without the Ambrosetti-Rabinowitz condition, J. Geom. Anal., 24 (2014), 118-143. doi: 10.1007/s12220-012-9330-4. Google Scholar [13] M. Mihăilescu and V. Rădulescu, On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, Proc. Amer. Math. Soc., 135 (2007), 2929-2937. doi: 10.1090/S0002-9939-07-08815-6. Google Scholar [14] O. Miyagaki and M. Souto, Superlinear problems without Ambrosetti and Rabinowitz growth condition, J. Differential Equations, 245 (2008), 3628-3638. doi: 10.1016/j.jde.2008.02.035. Google Scholar [15] M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math 1748, Springer-Verlag, Berlin, 2000. doi: 10.1007/BFb0104029. Google Scholar [16] V. Radulescu and D. Repovs, Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, Chapman and Hall/CRC, Monographs and Research Notes in Mathematics, 2015. doi: 10.1201/b18601. Google Scholar [17] X. Wang, J. Yao and D. Liu, High energy solutions to $p(x)$-Laplace equations of Schrödinger type, Electron. J. Diff. Equ., 136 (2015), 1-17. Google Scholar [18] X. Wang and J. Yao, Compact embeddings between variable exponent spaces with unbounded underlying domain, Nonlinear Analysis: TMA, 70 (2009), 3472-3482. doi: 10.1016/j.na.2008.07.005. Google Scholar [19] M. Willem and W. Zou, On a Schröinger equation with periodic potential and spectrum point zero, Indiana Univ. Math. J., 52 (2003), 109-132. doi: 10.1512/iumj.2003.52.2273. Google Scholar [20] J. Yao and X. Wang, On an open problem involving the $p(x)$-Laplacian, Nonlinear Analysis: TMA, 69 (2008), 1445-1453. doi: 10.1016/j.na.2007.06.044. Google Scholar [21] J. Yao, Solutions for Neumann boundary value problems involving $p(x)$-Laplace operators, Nonlinear Analysis: TMA, 68 (2008), 1271-1283. doi: 10.1016/j.na.2006.12.020. Google Scholar [22] L. Yin, J. Yao, Q. Zhang and C. Zhao, Multiplicity of strong solutions for a class of elliptic problems without the Ambrosetti-Rabinowitz condition in $\mathbb{R}^{N}$, arXiv: 1607.00581.Google Scholar [23] A. Zang, $p(x)$-Laplacian equations satisfying Cerami condition, J. Math. Anal. Appl., 337 (2008), 547-555. doi: 10.1016/j.jmaa.2007.04.007. Google Scholar [24] Q. Zhang and C. Zhao, Existence of strong solutions of a $p(x)$-Laplacian Dirichlet problem without the Ambrosetti-Rabinowitz condition, Comput. Math. Appl., 69 (2015), 1-12. doi: 10.1016/j.camwa.2014.10.022. Google Scholar [25] J. Zhao, Structure Theory of Banach Spaces, Wuhan University Press, Wuhan, 1991. Google Scholar [26] V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 50 (1986), 675-710. Google Scholar [27] C. Zhong, X. Fan and W. Chen, Introduction to Nonlinear Functional Analysis, Lanzhou University Press, Lanzhou, 1998. Google Scholar

show all references

##### References:
 [1] E. Acerbi and G. Mingione, Regularity results for a class of functionals with nonstandard growth, Arch. Ration. Mech. Anal., 156 (2001), 121-140. doi: 10.1007/s002050100117. Google Scholar [2] C. Alves and S. Liu, On superlinear $p(x)$-Laplacian equations in $R^{N}$, Nonlinear Analysis, 73 (2010), 2566-2579. doi: 10.1016/j.na.2010.06.033. Google Scholar [3] K. C. Chang, Critical Point Theory and Applications, Shanghai Scientific and Technology Press, Shanghai, 1986. Google Scholar [4] Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383-1406. doi: 10.1137/050624522. Google Scholar [5] L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, Berlin, 2011. doi: 10.1007/978-3-642-18363-8. Google Scholar [6] X. Fan and D. Zhao, On the spaces ${{L}^{p(x)}}(\Omega \text{)}$ and ${{W}^{m,p(x)}}\left( \Omega \right)$, J. Math. Anal. Appl., 263 (2001), 424-446. doi: 10.1006/jmaa.2000.7617. Google Scholar [7] X. Fan and Q. Zhang, Existence of solutions for $p(x)$-Laplacian Dirichlet problem, Nonlinear Anal., 52 (2003), 1843-1852. doi: 10.1016/S0362-546X(02)00150-5. Google Scholar [8] X. Fan, Q. Zhang and D. Zhao, Eigenvalues of $p(x)$-Laplacian Dirichlet problem, J. Math. Anal. Appl., 302 (2005), 306-317. doi: 10.1016/j.jmaa.2003.11.020. Google Scholar [9] L. Gasiński and N. Papageorgiou, A pair of positive solutions for the Dirichlet $p(z)$-Laplacian with concave and convex nonlinearities, J. Glob. Optim., 56 (2013), 1347-1360. doi: 10.1007/s10898-011-9841-8. Google Scholar [10] B. Ge, Q. Zhou and L. Zu, Positive solutions for nonlinear elliptic problems of $p$-Laplacian type on $\mathbb{R}^{N}$ without (AR) condition, Nonlinear Anal Real World Appl., 21 (2015), 99-109. doi: 10.1016/j.nonrwa.2014.07.002. Google Scholar [11] O. Kováčik and J. Rákosník, On spaces ${{L}^{p(x)}}\left( \Omega \right)$ and ${{W}^{k,p(x)}}\left( \Omega \right)$, Czechoslovak Math. J., 41 (1991), 592-618. Google Scholar [12] N. Lam and G. Lu, Elliptic equations and systems with subcritical and critical exponential growth without the Ambrosetti-Rabinowitz condition, J. Geom. Anal., 24 (2014), 118-143. doi: 10.1007/s12220-012-9330-4. Google Scholar [13] M. Mihăilescu and V. Rădulescu, On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, Proc. Amer. Math. Soc., 135 (2007), 2929-2937. doi: 10.1090/S0002-9939-07-08815-6. Google Scholar [14] O. Miyagaki and M. Souto, Superlinear problems without Ambrosetti and Rabinowitz growth condition, J. Differential Equations, 245 (2008), 3628-3638. doi: 10.1016/j.jde.2008.02.035. Google Scholar [15] M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math 1748, Springer-Verlag, Berlin, 2000. doi: 10.1007/BFb0104029. Google Scholar [16] V. Radulescu and D. Repovs, Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, Chapman and Hall/CRC, Monographs and Research Notes in Mathematics, 2015. doi: 10.1201/b18601. Google Scholar [17] X. Wang, J. Yao and D. Liu, High energy solutions to $p(x)$-Laplace equations of Schrödinger type, Electron. J. Diff. Equ., 136 (2015), 1-17. Google Scholar [18] X. Wang and J. Yao, Compact embeddings between variable exponent spaces with unbounded underlying domain, Nonlinear Analysis: TMA, 70 (2009), 3472-3482. doi: 10.1016/j.na.2008.07.005. Google Scholar [19] M. Willem and W. Zou, On a Schröinger equation with periodic potential and spectrum point zero, Indiana Univ. Math. J., 52 (2003), 109-132. doi: 10.1512/iumj.2003.52.2273. Google Scholar [20] J. Yao and X. Wang, On an open problem involving the $p(x)$-Laplacian, Nonlinear Analysis: TMA, 69 (2008), 1445-1453. doi: 10.1016/j.na.2007.06.044. Google Scholar [21] J. Yao, Solutions for Neumann boundary value problems involving $p(x)$-Laplace operators, Nonlinear Analysis: TMA, 68 (2008), 1271-1283. doi: 10.1016/j.na.2006.12.020. Google Scholar [22] L. Yin, J. Yao, Q. Zhang and C. Zhao, Multiplicity of strong solutions for a class of elliptic problems without the Ambrosetti-Rabinowitz condition in $\mathbb{R}^{N}$, arXiv: 1607.00581.Google Scholar [23] A. Zang, $p(x)$-Laplacian equations satisfying Cerami condition, J. Math. Anal. Appl., 337 (2008), 547-555. doi: 10.1016/j.jmaa.2007.04.007. Google Scholar [24] Q. Zhang and C. Zhao, Existence of strong solutions of a $p(x)$-Laplacian Dirichlet problem without the Ambrosetti-Rabinowitz condition, Comput. Math. Appl., 69 (2015), 1-12. doi: 10.1016/j.camwa.2014.10.022. Google Scholar [25] J. Zhao, Structure Theory of Banach Spaces, Wuhan University Press, Wuhan, 1991. Google Scholar [26] V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 50 (1986), 675-710. Google Scholar [27] C. Zhong, X. Fan and W. Chen, Introduction to Nonlinear Functional Analysis, Lanzhou University Press, Lanzhou, 1998. Google Scholar
 [1] Vincenzo Ambrosio. Periodic solutions for a superlinear fractional problem without the Ambrosetti-Rabinowitz condition. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2265-2284. doi: 10.3934/dcds.2017099 [2] VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with $p(x)$-growth and generalized Robin boundary value condition. Communications on Pure & Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003 [3] Eun Bee Choi, Yun-Ho Kim. Existence of nontrivial solutions for equations of $p(x)$-Laplace type without Ambrosetti and Rabinowitz condition. Conference Publications, 2015, 2015 (special) : 276-286. doi: 10.3934/proc.2015.0276 [4] K. D. Chu, D. D. Hai. Positive solutions for the one-dimensional singular superlinear $p$-Laplacian problem. Communications on Pure & Applied Analysis, 2020, 19 (1) : 241-252. doi: 10.3934/cpaa.2020013 [5] Nicholas J. Kass, Mohammad A. Rammaha. Local and global existence of solutions to a strongly damped wave equation of the $p$-Laplacian type. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1449-1478. doi: 10.3934/cpaa.2018070 [6] Phuong Le. Symmetry of singular solutions for a weighted Choquard equation involving the fractional $p$-Laplacian. Communications on Pure & Applied Analysis, 2020, 19 (1) : 527-539. doi: 10.3934/cpaa.2020026 [7] Jun Wang, Junxiang Xu, Fubao Zhang. Homoclinic orbits for superlinear Hamiltonian systems without Ambrosetti-Rabinowitz growth condition. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1241-1257. doi: 10.3934/dcds.2010.27.1241 [8] Gyula Csató. On the isoperimetric problem with perimeter density $r^p$. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2729-2749. doi: 10.3934/cpaa.2018129 [9] Mohan Mallick, R. Shivaji, Byungjae Son, S. Sundar. Bifurcation and multiplicity results for a class of $n\times n$ $p$-Laplacian system. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1295-1304. doi: 10.3934/cpaa.2018062 [10] Gabriele Bonanno, Giuseppina D'Aguì. Mixed elliptic problems involving the $p-$Laplacian with nonhomogeneous boundary conditions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5797-5817. doi: 10.3934/dcds.2017252 [11] Claudianor O. Alves, Vincenzo Ambrosio, Teresa Isernia. Existence, multiplicity and concentration for a class of fractional $p \& q$ Laplacian problems in $\mathbb{R} ^{N}$. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2009-2045. doi: 10.3934/cpaa.2019091 [12] Qunyi Bie, Haibo Cui, Qiru Wang, Zheng-An Yao. Incompressible limit for the compressible flow of liquid crystals in $L^p$ type critical Besov spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2879-2910. doi: 10.3934/dcds.2018124 [13] Xinghong Pan, Jiang Xu. Global existence and optimal decay estimates of the compressible viscoelastic flows in $L^p$ critical spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2021-2057. doi: 10.3934/dcds.2019085 [14] Silvia Frassu. Nonlinear Dirichlet problem for the nonlocal anisotropic operator $L_K$. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1847-1867. doi: 10.3934/cpaa.2019086 [15] Genghong Lin, Zhan Zhou. Homoclinic solutions of discrete $\phi$-Laplacian equations with mixed nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1723-1747. doi: 10.3934/cpaa.2018082 [16] Peng Mei, Zhan Zhou, Genghong Lin. Periodic and subharmonic solutions for a 2$n$th-order $\phi_c$-Laplacian difference equation containing both advances and retardations. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2085-2095. doi: 10.3934/dcdss.2019134 [17] Annalisa Cesaroni, Serena Dipierro, Matteo Novaga, Enrico Valdinoci. Minimizers of the $p$-oscillation functional. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 1-15. doi: 10.3934/dcds.2019231 [18] Yinbin Deng, Wei Shuai. Sign-changing multi-bump solutions for Kirchhoff-type equations in $\mathbb{R}^3$. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 3139-3168. doi: 10.3934/dcds.2018137 [19] Sanjiban Santra. On the positive solutions for a perturbed negative exponent problem on $\mathbb{R}^3$. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1441-1460. doi: 10.3934/dcds.2018059 [20] Shengbing Deng. Construction solutions for Neumann problem with Hénon term in $\mathbb{R}^2$. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2233-2253. doi: 10.3934/dcds.2019094

2018 Impact Factor: 1.143