• Previous Article
    A KAM theorem for the elliptic lower dimensional tori with one normal frequency in reversible systems
  • DCDS Home
  • This Issue
  • Next Article
    Global attractor for a strongly damped wave equation with fully supercritical nonlinearities
April  2017, 37(4): 2161-2180. doi: 10.3934/dcds.2017093

Existence-uniqueness and exponential estimate of pathwise solutions of retarded stochastic evolution systems with time smooth diffusion coefficients

1. 

Yangtze Center of Mathematics, Sichuan University, Chengdu 610064, China

2. 

College of Mathematics and Physics, Chongqing, University of Posts and Telecommunications, Chongqing 400065, China

*Corresponding author: Daoyi Xu

Received  August 2015 Revised  November 2016 Published  December 2016

Fund Project: The first author is supported by National Natural Science Foundation of China grant No. 11271270 and the second author is supported by the Doctor Start-up Funding of Chongqing University of Posts and Telecommunications grant No. A2016-80

In this paper, we study the existence-uniqueness and exponential estimate of the pathwise mild solution of retarded stochastic evolution systems driven by a Hilbert-valued Brownian motion. Firstly, the existence-uniqueness of the maximal local pathwise mild solution are given by the generalized local Lipschitz conditions, which extend a classical Pazy theorem on PDEs. We assume neither that the noise is given in additive form or that it is a very simple multiplicative noise, nor that the drift coefficient is global Lipschitz continuous. Secondly, the existence-uniqueness of the global pathwise mild solution are given by establishing an integral comparison principle, which extends the classical Wintner theorem on ODEs. Thirdly, an exponential estimate for the pathwise mild solution is obtained by constructing a delay integral inequality. Finally, the results obtained are applied to a retarded stochastic infinite system and a stochastic partial functional differential equation. Combining some known results, we can obtain a random attractor, whose condition overcomes the disadvantage in existing results that the exponential converging rate is restricted by the maximal admissible value for the time delay.

Citation: Daoyi Xu, Weisong Zhou. Existence-uniqueness and exponential estimate of pathwise solutions of retarded stochastic evolution systems with time smooth diffusion coefficients. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2161-2180. doi: 10.3934/dcds.2017093
References:
[1]

L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, Springer Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7. Google Scholar

[2]

P. W. BatesK. N. Lu and B. X. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869. doi: 10.1016/j.jde.2008.05.017. Google Scholar

[3]

R. E. Bellman, Vector Lyapunov functions, J. Soc. Industr. Appl. Math. Ser. A Control., 1 (1962), 32-34. Google Scholar

[4]

H. BessaihM. J. Garrido-Atienza and B. Schmalfuss, Pathwise solutions and attractors for retarded SPDES with time smooth diffusion cofficients, Disc. Contin. Dyn. Syst., 34 (2014), 3945-3968. doi: 10.3934/dcds.2014.34.3945. Google Scholar

[5]

T. CaraballoK. Liu and A. Truman, Stochastic functional partial differential equations: Existence, uniqueness and asymptotic decay property, Proc. R. Soc. Lond. A, 456 (2000), 1775-1802. doi: 10.1098/rspa.2000.0586. Google Scholar

[6]

P. L. Chow, Stochastic Partial Differential Equations, Chapman & Hall/CRC, New York, 2007. Google Scholar

[7]

C. CuevasE. Hernándezb and M. Rabelo, The existence of solutions for impulsive neutral functional differential equations, Comp. Math. Appl., 58 (2009), 744-757. doi: 10.1016/j.camwa.2009.04.008. Google Scholar

[8]

J. Q. DuanK. N. Lu and B. Schmalfuss, Invariant manifolds for stochastic partial differential equations, Ann. Prob., 31 (2003), 2109-2135. doi: 10.1214/aop/1068646380. Google Scholar

[9] A. Friedman, Stochastic Differential Equations and Applications, Academic Press, New York, 1975. Google Scholar
[10]

C. Geiß and R. Manthey, Comparison theorems for stochastic differential equations in finite and infinite dimensions, Stochastic Process Appl., 53 (1994), 23-35. doi: 10.1016/0304-4149(94)90055-8. Google Scholar

[11]

J. K. Hale, Theorey of Functional Differential Equations, Springer-Verlag, New York, 1977. Google Scholar

[12]

X. Y. HanW. X. Shen and S. F. Zhou, Random attractors for stochastic lattice dynamical systems in weighted spaces, J. Differential Equations, 250 (2011), 1235-1266. doi: 10.1016/j.jde.2010.10.018. Google Scholar

[13]

P. Hartman, Ordinary Differential Equations, John Wiley & Sons, Inc. , New York, 1964. Google Scholar

[14] H. Kunita, Stochastic Flows and Stochastic Differential Equations, University Press, Cambridge, 1990. Google Scholar
[15] V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, vol. Ⅱ, Academic Press, New York, 1969. Google Scholar
[16]

D. S. Li and D. Y. Xu, Periodic solutions of stochastic delay differential equations and applications to Logistic equation and neural networks, J. Korean Math. Soc., 50 (2013), 1165-1181. doi: 10.4134/JKMS.2013.50.6.1165. Google Scholar

[17]

X. X. Liao and X. R. Mao, Exponential stability of stochastic delay interval systems, System Control Lett., 40 (2000), 171-181. doi: 10.1016/S0167-6911(00)00021-9. Google Scholar

[18]

K. Liu, Stability of Infinite Dimensional Stochastic Differential Equations with Applications, Pitman Monographs Ser. Pure Appl. Math. , 135 Chapman & Hall/CRC, 2006. Google Scholar

[19]

S. J. LongL. Y. Teng and D. Y. Xu, Global attracting set and stability of stochastic neutral partial functional differential equations with impulses, Statistics and Probability Lett., 82 (2012), 1699-1709. doi: 10.1016/j.spl.2012.05.018. Google Scholar

[20]

K. N. Lu and B. Schmalfuss, Invariant manifolds for stochastic wave equations, J. Differential Equations, 236 (2007), 460-492. doi: 10.1016/j.jde.2006.09.024. Google Scholar

[21]

X. R. Mao, Stochastic Differential Equations and Applications, 2$ ^{nd} $ edition, Horwood, Chichester, 2008. doi: 10.1533/9780857099402. Google Scholar

[22]

V. M. Matrosov, The comparison principle with a Lyapunov vector-function Ⅰ-Ⅳ, Differential Equations, 4 (1968), 710-717; 893-900; 5 (1969), 853-864; 1596-1607.Google Scholar

[23]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1. Google Scholar

[24] G. D. Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, UK, 1992. doi: 10.1017/CBO9780511666223. Google Scholar
[25]

B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, in Int. Seminar on Applied Mathematics Nonlinear Dynamics: Attractor Approximation and Global Behaviour (eds. V. Reitmann, T. Riedrich and N. Koksch), 1992,185-192.Google Scholar

[26]

T. TaniguchiK. Liu and A. Truman, Existence, uniqueness, and asymptotic behavior of mild solution to stochastic functional differential equations in Hilbert spaces, J. Differential Equations, 181 (2002), 72-91. doi: 10.1006/jdeq.2001.4073. Google Scholar

[27]

L. S. WangZ. Zhang and Y. F. Wang, Stochastic exponential stability of the delayed reaction-diffusion recurrent neural networks with Markovian jumping parameters, Phys. Lett. A, 372 (2008), 3201-3209. doi: 10.1016/j.physleta.2007.07.090. Google Scholar

[28]

D. Y. Xu, Integro-differential equations and delay integral inequalities, Tohoku Math. J., 44 (1992), 365-378. doi: 10.2748/tmj/1178227303. Google Scholar

[29]

D. Y. Xu, Comparison theorems and vector Ⅴ-functions for stability of discrete systems, Proceedings of the Ninth Triennial World Congress of IFAC, 3 (1985), 1479-1482. Google Scholar

[30]

D. Y. XuY. M. Huang and Z. G. Yang, Existence theory for periodic Markov process and stochastic functional differential equations, Disc. Contin. Dyn. Syst., 24 (2009), 1005-1023. doi: 10.3934/dcds.2009.24.1005. Google Scholar

[31]

D. Y. XuB. LiS. J. Long and L. Y. Teng, Moment estimate and existence for solutions of stochastic functional differential equations, Nonlinear Analysis, 108 (2014), 128-143. doi: 10.1016/j.na.2014.05.004. Google Scholar

[32]

D. Y. XuX. H. Wang and Z. G. Yang, Existence-uniqueness problems for infinte dimensional stochastic differential equations with delays, J. Appl. Anal. Comput., 2 (2012), 449-463. Google Scholar

[33]

D. Y. XuX. H. Wang and Z. G. Yang, Further results on existence-uniqueness for stochastic functional differential equation, Sci. China Math., 56 (2013), 1169-1180. doi: 10.1007/s11425-012-4553-1. Google Scholar

[34]

D. Y. Xu and Z. C. Yang, Impulsive delay differential inequality and stability of neural networks, J. Math. Anal. Appl., 305 (2005), 107-120. doi: 10.1016/j.jmaa.2004.10.040. Google Scholar

[35]

D. Y. XuZ. G. Yang and Y. M. Huang, Existence-uniqueness and continuation theorems for stochastic functional differential equations, J. Differential Equations, 245 (2008), 1681-1703. doi: 10.1016/j.jde.2008.03.029. Google Scholar

[36]

D. Y. XuH. Y. Zhao and H. Zhu, Global dynamics of Hopfield neural networks involving variable delays, Computer Math. Appl., 42 (2001), 39-45. doi: 10.1016/S0898-1221(01)00128-6. Google Scholar

[37]

X. H. ZhangK. Wang and D. S. Li, Stochastic periodic solutions of stochastic differential equations driven by Lévy process, J. Math. Anal. Appl., 430 (2015), 231-242. doi: 10.1016/j.jmaa.2015.04.090. Google Scholar

[38]

H. Y. Zhao and N. Ding, Dynamic analysis of stochastic Cohen-Grossberg neural networks with time delays, Appl. Math. Comput., 183 (2006), 464-470. doi: 10.1016/j.amc.2006.05.087. Google Scholar

show all references

References:
[1]

L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, Springer Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7. Google Scholar

[2]

P. W. BatesK. N. Lu and B. X. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869. doi: 10.1016/j.jde.2008.05.017. Google Scholar

[3]

R. E. Bellman, Vector Lyapunov functions, J. Soc. Industr. Appl. Math. Ser. A Control., 1 (1962), 32-34. Google Scholar

[4]

H. BessaihM. J. Garrido-Atienza and B. Schmalfuss, Pathwise solutions and attractors for retarded SPDES with time smooth diffusion cofficients, Disc. Contin. Dyn. Syst., 34 (2014), 3945-3968. doi: 10.3934/dcds.2014.34.3945. Google Scholar

[5]

T. CaraballoK. Liu and A. Truman, Stochastic functional partial differential equations: Existence, uniqueness and asymptotic decay property, Proc. R. Soc. Lond. A, 456 (2000), 1775-1802. doi: 10.1098/rspa.2000.0586. Google Scholar

[6]

P. L. Chow, Stochastic Partial Differential Equations, Chapman & Hall/CRC, New York, 2007. Google Scholar

[7]

C. CuevasE. Hernándezb and M. Rabelo, The existence of solutions for impulsive neutral functional differential equations, Comp. Math. Appl., 58 (2009), 744-757. doi: 10.1016/j.camwa.2009.04.008. Google Scholar

[8]

J. Q. DuanK. N. Lu and B. Schmalfuss, Invariant manifolds for stochastic partial differential equations, Ann. Prob., 31 (2003), 2109-2135. doi: 10.1214/aop/1068646380. Google Scholar

[9] A. Friedman, Stochastic Differential Equations and Applications, Academic Press, New York, 1975. Google Scholar
[10]

C. Geiß and R. Manthey, Comparison theorems for stochastic differential equations in finite and infinite dimensions, Stochastic Process Appl., 53 (1994), 23-35. doi: 10.1016/0304-4149(94)90055-8. Google Scholar

[11]

J. K. Hale, Theorey of Functional Differential Equations, Springer-Verlag, New York, 1977. Google Scholar

[12]

X. Y. HanW. X. Shen and S. F. Zhou, Random attractors for stochastic lattice dynamical systems in weighted spaces, J. Differential Equations, 250 (2011), 1235-1266. doi: 10.1016/j.jde.2010.10.018. Google Scholar

[13]

P. Hartman, Ordinary Differential Equations, John Wiley & Sons, Inc. , New York, 1964. Google Scholar

[14] H. Kunita, Stochastic Flows and Stochastic Differential Equations, University Press, Cambridge, 1990. Google Scholar
[15] V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, vol. Ⅱ, Academic Press, New York, 1969. Google Scholar
[16]

D. S. Li and D. Y. Xu, Periodic solutions of stochastic delay differential equations and applications to Logistic equation and neural networks, J. Korean Math. Soc., 50 (2013), 1165-1181. doi: 10.4134/JKMS.2013.50.6.1165. Google Scholar

[17]

X. X. Liao and X. R. Mao, Exponential stability of stochastic delay interval systems, System Control Lett., 40 (2000), 171-181. doi: 10.1016/S0167-6911(00)00021-9. Google Scholar

[18]

K. Liu, Stability of Infinite Dimensional Stochastic Differential Equations with Applications, Pitman Monographs Ser. Pure Appl. Math. , 135 Chapman & Hall/CRC, 2006. Google Scholar

[19]

S. J. LongL. Y. Teng and D. Y. Xu, Global attracting set and stability of stochastic neutral partial functional differential equations with impulses, Statistics and Probability Lett., 82 (2012), 1699-1709. doi: 10.1016/j.spl.2012.05.018. Google Scholar

[20]

K. N. Lu and B. Schmalfuss, Invariant manifolds for stochastic wave equations, J. Differential Equations, 236 (2007), 460-492. doi: 10.1016/j.jde.2006.09.024. Google Scholar

[21]

X. R. Mao, Stochastic Differential Equations and Applications, 2$ ^{nd} $ edition, Horwood, Chichester, 2008. doi: 10.1533/9780857099402. Google Scholar

[22]

V. M. Matrosov, The comparison principle with a Lyapunov vector-function Ⅰ-Ⅳ, Differential Equations, 4 (1968), 710-717; 893-900; 5 (1969), 853-864; 1596-1607.Google Scholar

[23]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1. Google Scholar

[24] G. D. Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, UK, 1992. doi: 10.1017/CBO9780511666223. Google Scholar
[25]

B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, in Int. Seminar on Applied Mathematics Nonlinear Dynamics: Attractor Approximation and Global Behaviour (eds. V. Reitmann, T. Riedrich and N. Koksch), 1992,185-192.Google Scholar

[26]

T. TaniguchiK. Liu and A. Truman, Existence, uniqueness, and asymptotic behavior of mild solution to stochastic functional differential equations in Hilbert spaces, J. Differential Equations, 181 (2002), 72-91. doi: 10.1006/jdeq.2001.4073. Google Scholar

[27]

L. S. WangZ. Zhang and Y. F. Wang, Stochastic exponential stability of the delayed reaction-diffusion recurrent neural networks with Markovian jumping parameters, Phys. Lett. A, 372 (2008), 3201-3209. doi: 10.1016/j.physleta.2007.07.090. Google Scholar

[28]

D. Y. Xu, Integro-differential equations and delay integral inequalities, Tohoku Math. J., 44 (1992), 365-378. doi: 10.2748/tmj/1178227303. Google Scholar

[29]

D. Y. Xu, Comparison theorems and vector Ⅴ-functions for stability of discrete systems, Proceedings of the Ninth Triennial World Congress of IFAC, 3 (1985), 1479-1482. Google Scholar

[30]

D. Y. XuY. M. Huang and Z. G. Yang, Existence theory for periodic Markov process and stochastic functional differential equations, Disc. Contin. Dyn. Syst., 24 (2009), 1005-1023. doi: 10.3934/dcds.2009.24.1005. Google Scholar

[31]

D. Y. XuB. LiS. J. Long and L. Y. Teng, Moment estimate and existence for solutions of stochastic functional differential equations, Nonlinear Analysis, 108 (2014), 128-143. doi: 10.1016/j.na.2014.05.004. Google Scholar

[32]

D. Y. XuX. H. Wang and Z. G. Yang, Existence-uniqueness problems for infinte dimensional stochastic differential equations with delays, J. Appl. Anal. Comput., 2 (2012), 449-463. Google Scholar

[33]

D. Y. XuX. H. Wang and Z. G. Yang, Further results on existence-uniqueness for stochastic functional differential equation, Sci. China Math., 56 (2013), 1169-1180. doi: 10.1007/s11425-012-4553-1. Google Scholar

[34]

D. Y. Xu and Z. C. Yang, Impulsive delay differential inequality and stability of neural networks, J. Math. Anal. Appl., 305 (2005), 107-120. doi: 10.1016/j.jmaa.2004.10.040. Google Scholar

[35]

D. Y. XuZ. G. Yang and Y. M. Huang, Existence-uniqueness and continuation theorems for stochastic functional differential equations, J. Differential Equations, 245 (2008), 1681-1703. doi: 10.1016/j.jde.2008.03.029. Google Scholar

[36]

D. Y. XuH. Y. Zhao and H. Zhu, Global dynamics of Hopfield neural networks involving variable delays, Computer Math. Appl., 42 (2001), 39-45. doi: 10.1016/S0898-1221(01)00128-6. Google Scholar

[37]

X. H. ZhangK. Wang and D. S. Li, Stochastic periodic solutions of stochastic differential equations driven by Lévy process, J. Math. Anal. Appl., 430 (2015), 231-242. doi: 10.1016/j.jmaa.2015.04.090. Google Scholar

[38]

H. Y. Zhao and N. Ding, Dynamic analysis of stochastic Cohen-Grossberg neural networks with time delays, Appl. Math. Comput., 183 (2006), 464-470. doi: 10.1016/j.amc.2006.05.087. Google Scholar

[1]

John A. D. Appleby, Alexandra Rodkina, Henri Schurz. Pathwise non-exponential decay rates of solutions of scalar nonlinear stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 667-696. doi: 10.3934/dcdsb.2006.6.667

[2]

Nathan Glatt-Holtz, Roger Temam, Chuntian Wang. Martingale and pathwise solutions to the stochastic Zakharov-Kuznetsov equation with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1047-1085. doi: 10.3934/dcdsb.2014.19.1047

[3]

Ammari Zied, Liard Quentin. On uniqueness of measure-valued solutions to Liouville's equation of Hamiltonian PDEs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 723-748. doi: 10.3934/dcds.2018032

[4]

Bixiang Wang. Stochastic bifurcation of pathwise random almost periodic and almost automorphic solutions for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3745-3769. doi: 10.3934/dcds.2015.35.3745

[5]

Giuseppe Da Prato, Franco Flandoli. Some results for pathwise uniqueness in Hilbert spaces. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1789-1797. doi: 10.3934/cpaa.2014.13.1789

[6]

Andrea L. Bertozzi, Dejan Slepcev. Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1617-1637. doi: 10.3934/cpaa.2010.9.1617

[7]

Xin Lai, Xinfu Chen, Mingxin Wang, Cong Qin, Yajing Zhang. Existence, uniqueness, and stability of bubble solutions of a chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 805-832. doi: 10.3934/dcds.2016.36.805

[8]

María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Local pathwise solutions to stochastic evolution equations driven by fractional Brownian motions with Hurst parameters $H\in (1/3,1/2]$. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2553-2581. doi: 10.3934/dcdsb.2015.20.2553

[9]

T. Tachim Medjo. On the existence and uniqueness of solution to a stochastic simplified liquid crystal model. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2243-2264. doi: 10.3934/cpaa.2019101

[10]

Tomás Caraballo, José A. Langa, José Valero. Stabilisation of differential inclusions and PDEs without uniqueness by noise. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1375-1392. doi: 10.3934/cpaa.2008.7.1375

[11]

Messoud Efendiev, Anna Zhigun. On an exponential attractor for a class of PDEs with degenerate diffusion and chemotaxis. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 651-673. doi: 10.3934/dcds.2018028

[12]

Jérôme Coville, Nicolas Dirr, Stephan Luckhaus. Non-existence of positive stationary solutions for a class of semi-linear PDEs with random coefficients. Networks & Heterogeneous Media, 2010, 5 (4) : 745-763. doi: 10.3934/nhm.2010.5.745

[13]

Yinxia Wang, Hengjun Zhao. Global existence and decay estimate of classical solutions to the compressible viscoelastic flows with self-gravitating. Communications on Pure & Applied Analysis, 2018, 17 (2) : 347-374. doi: 10.3934/cpaa.2018020

[14]

Tomás Caraballo, María J. Garrido–Atienza, Björn Schmalfuss, José Valero. Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 439-455. doi: 10.3934/dcdsb.2010.14.439

[15]

Min Zhu, Panpan Ren, Junping Li. Exponential stability of solutions for retarded stochastic differential equations without dissipativity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2923-2938. doi: 10.3934/dcdsb.2017157

[16]

Bahareh Akhtari, Esmail Babolian, Andreas Neuenkirch. An Euler scheme for stochastic delay differential equations on unbounded domains: Pathwise convergence. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 23-38. doi: 10.3934/dcdsb.2015.20.23

[17]

Hiroshi Watanabe. Existence and uniqueness of entropy solutions to strongly degenerate parabolic equations with discontinuous coefficients. Conference Publications, 2013, 2013 (special) : 781-790. doi: 10.3934/proc.2013.2013.781

[18]

Peiying Chen. Existence and uniqueness of weak solutions for a class of nonlinear parabolic equations. Electronic Research Announcements, 2017, 24: 38-52. doi: 10.3934/era.2017.24.005

[19]

Hongbin Chen, Yi Li. Existence, uniqueness, and stability of periodic solutions of an equation of duffing type. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 793-807. doi: 10.3934/dcds.2007.18.793

[20]

Stefanie Hirsch, Dietmar Ölz, Christian Schmeiser. Existence and uniqueness of solutions for a model of non-sarcomeric actomyosin bundles. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4945-4962. doi: 10.3934/dcds.2016014

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (14)
  • HTML views (5)
  • Cited by (1)

Other articles
by authors

[Back to Top]