• Previous Article
    Global well-posedness and large time behavior of classical solutions to the diffusion approximation model in radiation hydrodynamics
  • DCDS Home
  • This Issue
  • Next Article
    Almost global existence for cubic nonlinear Schrödinger equations in one space dimension
April  2017, 37(4): 2065-2075. doi: 10.3934/dcds.2017088

Long-time stability of small FPU solitary waves

1. 

Department of Applied Mathematics, Western University, London, ON, N6A 3K7, Canada

2. 

Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, L8S 4K1, Canada

Received  February 2016 Revised  November 2016 Published  December 2016

Fund Project: The work of A. Khan was performed during MSc program at McMaster University in 2013-2015. The work of D.E. Pelinovsky is supported by the NSERC grant. The authors thank E. Dumas, T. Penati, and G. Schneider for discussions and collaborations

Small-amplitude waves in the Fermi-Pasta-Ulam (FPU) lattice with weakly anharmonic interaction potentialsare described by the generalized Korteweg-de Vries (KdV) equation. Justification of the small-amplitudeapproximation is usually performed on the time scale, for which dynamics of the KdV equation is defined.We show how to extend justification analysis on longer time intervals provided dynamics of the generalized KdVequation is globally well-posed in Sobolev spaces and either the Sobolev norms are globally boundedor they grow at most polynomially. The time intervals are extended respectively by the logarithmic or double logarithmic factorsin terms of the small amplitude parameter. Controlling the approximation error on longer time intervalsallows us to deduce nonlinear metastability of small FPU solitary waves from orbital stability of the KdV solitary waves.

Citation: Amjad Khan, Dmitry E. Pelinovsky. Long-time stability of small FPU solitary waves. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2065-2075. doi: 10.3934/dcds.2017088
References:
[1]

D. Bambusi and T. Penati, Continuous approximation of breathers in 1D and 2D DNLS lattices, Nonlinearity, 23 (2010), 143-157. doi: 10.1088/0951-7715/23/1/008.

[2]

D. Bambusi and A. Ponno, On metastability in FPU, Comm. Math. Phys., 264 (2006), 539-561. doi: 10.1007/s00220-005-1488-1.

[3]

G. N. BenesA. Hoffman and C. E. Wayne, Asymptotic stability of the Toda m-soliton, J. Math. Anal. Appl., 386 (2012), 445-460. doi: 10.1016/j.jmaa.2011.08.007.

[4]

B. Bidegaray-FesquetE. Dumas and G. James, From Newton's cradle to the discrete p-Schrödinger equation, SIAM J. Math. Anal., 45 (2013), 3404-3430. doi: 10.1137/130924196.

[5]

J. BonaY. Liu and N. V. Ngueyn, Stability fo solitary waves in higher-order Sobolev spaces, Comm Math. Sci., 2 (2004), 35-52. doi: 10.4310/CMS.2004.v2.n1.a3.

[6]

E. Dumas and D. E. Pelinovsky, Justification of the log-KdV equation in granular chains: The case of precompression, SIAM J. Math. Anal., 46 (2014), 4075-4103. doi: 10.1137/140969270.

[7]

G. Friesecke and R. L. Pego, Solitary waves on FPU lattices, Nonlinearity, 12 (1999), 1601-1627; 15 (2002), 1343-1359; 17 (2004), 207-227; 17 (2004), 229-251.

[8]

J. GaisonS. MoskowJ. D. Wright and Q. Zhang, Approximation of polyatomic FPU lattices by KdV equations, Multiscale Model. Simul., 12 (2014), 953-995. doi: 10.1137/130941638.

[9]

A. Hoffman and C. E. Wayne, Asymptotic two-soliton solutions in the Fermi-Pasta-Ulam model, J. Dynam. Differential Equations, 21 (2009), 343-351. doi: 10.1007/s10884-009-9134-9.

[10]

T. Kato, On the Korteweg-de Vries equation, Manuscript Math., 28 (1979), 89-99. doi: 10.1007/BF01647967.

[11]

T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Stud. Appl. Math., 8 (1983), 93-128.

[12]

C. KenigG. Ponce and L. Vega, Well-posedness of the initial-value problem for the Korteweg-De Vries equation, J. Americ. Math. Soc., 4 (1991), 323-347. doi: 10.1090/S0894-0347-1991-1086966-0.

[13]

C. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-De Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620. doi: 10.1002/cpa.3160460405.

[14]

D. Lannes and J. Rauch, Validity of nonlinear geometric optics with times growing logarithmically, Proc. AMS, 129 (2000), 1087-1096. doi: 10.1090/S0002-9939-00-05845-7.

[15]

R. M. MiuraC. S. Gardner and M. D. Kruskal, Korteweg-de Vries equations and generalization. Ⅱ. Existence of conservation laws and constants of motion, J. Math. Phys., 9 (1968), 1204-1209. doi: 10.1063/1.1664701.

[16]

T. Mizumachi, Asymptotic stability of lattice solitons in the energy space, Commun. Math. Phys., 288 (2009), 125-144. doi: 10.1007/s00220-009-0768-6.

[17]

T. Mizumachi, Asymptotic stability of N-solitary waves of the FPU lattices, Archive for Rational Mechanics and Analysis, 207 (2013), 393-457. doi: 10.1007/s00205-012-0564-x.

[18]

R. L. Pego and M. I. Weinstein, Eigenvalues, and instabilities of solitary waves, Philos. Trans. Roy. Soc. London A, 340 (1992), 47-94. doi: 10.1098/rsta.1992.0055.

[19]

R. L. Pego and M. I. Weinstein, Asymptotic stability of solitary waves, Comm. Math. Phys., 164 (1994), 305-349. doi: 10.1007/BF02101705.

[20]

D. PelinovskyT. Penati and S. Paleari, Approximation of small-amplitude weakly coupled oscillators with discrete nonlinear Schrödinger equations, Rev. Math. Phys., 28 (2016), 1650015(25 pages). doi: 10.1142/S0129055X1650015X.

[21]

G. Schneider and C. E. Wayne, Counter-propagating waves on fluid surfaces and the continuum limit of the Fermi-Pasta-Ulam model, In International Conference on Differential Equations (Berlin, 1999), vol. 1 (eds B Fiedler, K Gröger, J Sprekels), pp. 390-404 (World Sci. Publishing, River Edge, NJ, USA, 2000).

[22]

G. Staffilani, On the growth of high Sobolev norms of solutions for KdV and Schrödinger equations, Duke Math. J., 86 (1997), 109-142. doi: 10.1215/S0012-7094-97-08604-X.

show all references

References:
[1]

D. Bambusi and T. Penati, Continuous approximation of breathers in 1D and 2D DNLS lattices, Nonlinearity, 23 (2010), 143-157. doi: 10.1088/0951-7715/23/1/008.

[2]

D. Bambusi and A. Ponno, On metastability in FPU, Comm. Math. Phys., 264 (2006), 539-561. doi: 10.1007/s00220-005-1488-1.

[3]

G. N. BenesA. Hoffman and C. E. Wayne, Asymptotic stability of the Toda m-soliton, J. Math. Anal. Appl., 386 (2012), 445-460. doi: 10.1016/j.jmaa.2011.08.007.

[4]

B. Bidegaray-FesquetE. Dumas and G. James, From Newton's cradle to the discrete p-Schrödinger equation, SIAM J. Math. Anal., 45 (2013), 3404-3430. doi: 10.1137/130924196.

[5]

J. BonaY. Liu and N. V. Ngueyn, Stability fo solitary waves in higher-order Sobolev spaces, Comm Math. Sci., 2 (2004), 35-52. doi: 10.4310/CMS.2004.v2.n1.a3.

[6]

E. Dumas and D. E. Pelinovsky, Justification of the log-KdV equation in granular chains: The case of precompression, SIAM J. Math. Anal., 46 (2014), 4075-4103. doi: 10.1137/140969270.

[7]

G. Friesecke and R. L. Pego, Solitary waves on FPU lattices, Nonlinearity, 12 (1999), 1601-1627; 15 (2002), 1343-1359; 17 (2004), 207-227; 17 (2004), 229-251.

[8]

J. GaisonS. MoskowJ. D. Wright and Q. Zhang, Approximation of polyatomic FPU lattices by KdV equations, Multiscale Model. Simul., 12 (2014), 953-995. doi: 10.1137/130941638.

[9]

A. Hoffman and C. E. Wayne, Asymptotic two-soliton solutions in the Fermi-Pasta-Ulam model, J. Dynam. Differential Equations, 21 (2009), 343-351. doi: 10.1007/s10884-009-9134-9.

[10]

T. Kato, On the Korteweg-de Vries equation, Manuscript Math., 28 (1979), 89-99. doi: 10.1007/BF01647967.

[11]

T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Stud. Appl. Math., 8 (1983), 93-128.

[12]

C. KenigG. Ponce and L. Vega, Well-posedness of the initial-value problem for the Korteweg-De Vries equation, J. Americ. Math. Soc., 4 (1991), 323-347. doi: 10.1090/S0894-0347-1991-1086966-0.

[13]

C. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-De Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620. doi: 10.1002/cpa.3160460405.

[14]

D. Lannes and J. Rauch, Validity of nonlinear geometric optics with times growing logarithmically, Proc. AMS, 129 (2000), 1087-1096. doi: 10.1090/S0002-9939-00-05845-7.

[15]

R. M. MiuraC. S. Gardner and M. D. Kruskal, Korteweg-de Vries equations and generalization. Ⅱ. Existence of conservation laws and constants of motion, J. Math. Phys., 9 (1968), 1204-1209. doi: 10.1063/1.1664701.

[16]

T. Mizumachi, Asymptotic stability of lattice solitons in the energy space, Commun. Math. Phys., 288 (2009), 125-144. doi: 10.1007/s00220-009-0768-6.

[17]

T. Mizumachi, Asymptotic stability of N-solitary waves of the FPU lattices, Archive for Rational Mechanics and Analysis, 207 (2013), 393-457. doi: 10.1007/s00205-012-0564-x.

[18]

R. L. Pego and M. I. Weinstein, Eigenvalues, and instabilities of solitary waves, Philos. Trans. Roy. Soc. London A, 340 (1992), 47-94. doi: 10.1098/rsta.1992.0055.

[19]

R. L. Pego and M. I. Weinstein, Asymptotic stability of solitary waves, Comm. Math. Phys., 164 (1994), 305-349. doi: 10.1007/BF02101705.

[20]

D. PelinovskyT. Penati and S. Paleari, Approximation of small-amplitude weakly coupled oscillators with discrete nonlinear Schrödinger equations, Rev. Math. Phys., 28 (2016), 1650015(25 pages). doi: 10.1142/S0129055X1650015X.

[21]

G. Schneider and C. E. Wayne, Counter-propagating waves on fluid surfaces and the continuum limit of the Fermi-Pasta-Ulam model, In International Conference on Differential Equations (Berlin, 1999), vol. 1 (eds B Fiedler, K Gröger, J Sprekels), pp. 390-404 (World Sci. Publishing, River Edge, NJ, USA, 2000).

[22]

G. Staffilani, On the growth of high Sobolev norms of solutions for KdV and Schrödinger equations, Duke Math. J., 86 (1997), 109-142. doi: 10.1215/S0012-7094-97-08604-X.

[1]

Alexander Pankov, Vassilis M. Rothos. Traveling waves in Fermi-Pasta-Ulam lattices with saturable nonlinearities. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 835-849. doi: 10.3934/dcds.2011.30.835

[2]

Alexander Pankov. Traveling waves in Fermi-Pasta-Ulam chains with nonlocal interaction. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2097-2113. doi: 10.3934/dcdss.2019135

[3]

Muhammad Usman, Bing-Yu Zhang. Forced oscillations of the Korteweg-de Vries equation on a bounded domain and their stability. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1509-1523. doi: 10.3934/dcds.2010.26.1509

[4]

Simone Paleari, Tiziano Penati. Equipartition times in a Fermi-Pasta-Ulam system. Conference Publications, 2005, 2005 (Special) : 710-719. doi: 10.3934/proc.2005.2005.710

[5]

Belkacem Said-Houari. Long-time behavior of solutions of the generalized Korteweg--de Vries equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 245-252. doi: 10.3934/dcdsb.2016.21.245

[6]

Antonio Giorgilli, Simone Paleari, Tiziano Penati. Local chaotic behaviour in the Fermi-Pasta-Ulam system. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 991-1004. doi: 10.3934/dcdsb.2005.5.991

[7]

Brian Pigott. Polynomial-in-time upper bounds for the orbital instability of subcritical generalized Korteweg-de Vries equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 389-418. doi: 10.3934/cpaa.2014.13.389

[8]

Eduardo Cerpa. Control of a Korteweg-de Vries equation: A tutorial. Mathematical Control & Related Fields, 2014, 4 (1) : 45-99. doi: 10.3934/mcrf.2014.4.45

[9]

M. Agrotis, S. Lafortune, P.G. Kevrekidis. On a discrete version of the Korteweg-De Vries equation. Conference Publications, 2005, 2005 (Special) : 22-29. doi: 10.3934/proc.2005.2005.22

[10]

Ramon Plaza, K. Zumbrun. An Evans function approach to spectral stability of small-amplitude shock profiles. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 885-924. doi: 10.3934/dcds.2004.10.885

[11]

Anne de Bouard, Eric Gautier. Exit problems related to the persistence of solitons for the Korteweg-de Vries equation with small noise. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 857-871. doi: 10.3934/dcds.2010.26.857

[12]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Global stabilization of a coupled system of two generalized Korteweg-de Vries type equations posed on a finite domain. Mathematical Control & Related Fields, 2011, 1 (3) : 353-389. doi: 10.3934/mcrf.2011.1.353

[13]

Netra Khanal, Ramjee Sharma, Jiahong Wu, Juan-Ming Yuan. A dual-Petrov-Galerkin method for extended fifth-order Korteweg-de Vries type equations. Conference Publications, 2009, 2009 (Special) : 442-450. doi: 10.3934/proc.2009.2009.442

[14]

Olivier Goubet. Asymptotic smoothing effect for weakly damped forced Korteweg-de Vries equations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 625-644. doi: 10.3934/dcds.2000.6.625

[15]

Guolian Wang, Boling Guo. Stochastic Korteweg-de Vries equation driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5255-5272. doi: 10.3934/dcds.2015.35.5255

[16]

Eduardo Cerpa, Emmanuelle Crépeau. Rapid exponential stabilization for a linear Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 655-668. doi: 10.3934/dcdsb.2009.11.655

[17]

Pierre Garnier. Damping to prevent the blow-up of the korteweg-de vries equation. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1455-1470. doi: 10.3934/cpaa.2017069

[18]

Ludovick Gagnon. Qualitative description of the particle trajectories for the N-solitons solution of the Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1489-1507. doi: 10.3934/dcds.2017061

[19]

Arnaud Debussche, Jacques Printems. Convergence of a semi-discrete scheme for the stochastic Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 761-781. doi: 10.3934/dcdsb.2006.6.761

[20]

Qifan Li. Local well-posedness for the periodic Korteweg-de Vries equation in analytic Gevrey classes. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1097-1109. doi: 10.3934/cpaa.2012.11.1097

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (9)
  • HTML views (3)
  • Cited by (0)

Other articles
by authors

[Back to Top]