April  2017, 37(4): 1941-1957. doi: 10.3934/dcds.2017082

On specification and measure expansiveness

1. 

Department of Mathematics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, CEP 21941-909 RJ, Brazil

2. 

Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA

Received  June 2016 Revised  November 2016 Published  December 2016

Fund Project: The research of W.C. was supported by CAPES and CNPq, and of M.D. by Johann-Gottfried-Herder Foundation

We relate the local specification and periodic shadowing properties. We also clarify the relation between local weak specification and local specification if the system is measure expansive. The notion of strong measure expansiveness is introduced, and an example of a non-expansive systems with the strong measure expansive property is given. Moreover, we find a family of examples with the $N$-expansive property, which are not strong measure expansive. We finally show a spectral decomposition theorem for strong measure expansive dynamical systems with shadowing.

Citation: Welington Cordeiro, Manfred Denker, Xuan Zhang. On specification and measure expansiveness. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1941-1957. doi: 10.3934/dcds.2017082
References:
[1]

D. V. Anosov, On a class of invariant sets of smooth dynamical systems, Proc. 5th Int. Conf. on Nonlin. Oscill., 2 (1970), 39-45. Google Scholar

[2]

N. Aoki and K. Hiraide, Topological Theory of Dynamical Systems, North-Holland Publishing Co. , Amsterdam, 1994. Google Scholar

[3]

A. Artigue, Robustly N-expansive surface diffeomorphisms, Discrete Contin. Dyn. Syst, 36 (2016), 2367-2376. doi: 10.3934/dcds.2016.36.2367. Google Scholar

[4]

A. Artigue and D. Carrasco-Olivera, A note on measure-expansive diffeomorphisms, J. Math. Anal. Appl., 428 (2015), 713-716. doi: 10.1016/j.jmaa.2015.02.052. Google Scholar

[5]

A. Artigue, M. J. Pacífico and J. Vieitez, N-expansive homeomorphisms on surfaces Communications in Contemporary Mathematics 19 (2017), 1650040, 18pp. doi: 10.1142/S0219199716500401. Google Scholar

[6]

R. Bowen, Periodic points and measures for Axiom A diffeomorphisms, Trans. Amer. Math. Soc., 154 (1971), 377-397. doi: 10.1090/S0002-9947-1971-0282372-0. Google Scholar

[7]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414. doi: 10.1090/S0002-9947-1971-0274707-X. Google Scholar

[8]

B. Carvalho and W. Cordeiro, N-expansive homeomorphisms with the shadowing property, Journal of Differential Equations, 261 (2016), 3734-3755. doi: 10.1016/j.jde.2016.06.003. Google Scholar

[9]

B. Carvalho and D. Kwietniak, On homeomorphisms with the two-sided limit shadowing property, J. Math Anal. Appl., 420 (2014), 801-813. doi: 10.1016/j.jmaa.2014.06.011. Google Scholar

[10]

A. CastroK. Oliveira and V. Pinheiro, Shadowing by non-uniformly hyperbolic periodic points and uniform hyperbolicity, Nonlinearity, 20 (2007), 75-85. doi: 10.1088/0951-7715/20/1/005. Google Scholar

[11]

M. Denker, S. Senti and X. Zhang, Fluctuations of ergodic sums over periodic orbits under specification, Preprint.Google Scholar

[12]

T. EirolaO. Nevanlinna and S. Pilyugin, Limit shadowing property, Numer. Funct. Anal. Optim., 18 (1997), 75-92. doi: 10.1080/01630569708816748. Google Scholar

[13]

P. Kościelniak, On genericity of shadowing and periodic shadowing property, J. Math. Anal. Appl., 310 (2005), 188-196. doi: 10.1016/j.jmaa.2005.01.053. Google Scholar

[14]

H. Kato, Continuum-wise expansive homeomorphisms, Canad. J. Math., 45 (1993), 576-598. doi: 10.4153/CJM-1993-030-4. Google Scholar

[15]

C. A. Morales, A generalization of expansivity, Discrete Contin. Dyn. Syst, 32 (2012), 293-301. doi: 10.3934/dcds.2012.32.293. Google Scholar

[16]

C. A. Morales and V. F. Sirvent, Expansive Measures 29 Colóquio Brasileiro de Matemática, 2013. Google Scholar

[17]

A. V. OsipovS. Y. Pilyugin and S. Tikhomirov, Periodic shadowing and $Ω$-stability, Regular and Chaotic Dynamics, 15 (2010), 404-417. doi: 10.1134/S1560354710020255. Google Scholar

[18]

S. Y. Pilyugin, Shadowing in structurally stable flows, Journal of differential equations, 140 (1997), 238-265. doi: 10.1006/jdeq.1997.3295. Google Scholar

[19]

S. Y. Pilyugin and S. Tikhomirov, Lipschitz shadowing implies structural stability, Nonlinearity, 23 (2010), 2509-2515. doi: 10.1088/0951-7715/23/10/009. Google Scholar

[20]

K. Sakai, Various shadowing properties for positively expansive maps, Topology and its Applications, 131 (2003), 15-31. doi: 10.1016/S0166-8641(02)00260-2. Google Scholar

[21]

S. Smale, Dynamical systems on n-dimensional manifolds, in Symposium on differential equations and dynamical systems (Puerto Rico) Academic Press, New York, 1967. Google Scholar

[22]

W. R. Utz, Unstable homeomorphisms, Proc. Amer. Math. Soc., 1 (1950), 769-774. doi: 10.1090/S0002-9939-1950-0038022-3. Google Scholar

show all references

References:
[1]

D. V. Anosov, On a class of invariant sets of smooth dynamical systems, Proc. 5th Int. Conf. on Nonlin. Oscill., 2 (1970), 39-45. Google Scholar

[2]

N. Aoki and K. Hiraide, Topological Theory of Dynamical Systems, North-Holland Publishing Co. , Amsterdam, 1994. Google Scholar

[3]

A. Artigue, Robustly N-expansive surface diffeomorphisms, Discrete Contin. Dyn. Syst, 36 (2016), 2367-2376. doi: 10.3934/dcds.2016.36.2367. Google Scholar

[4]

A. Artigue and D. Carrasco-Olivera, A note on measure-expansive diffeomorphisms, J. Math. Anal. Appl., 428 (2015), 713-716. doi: 10.1016/j.jmaa.2015.02.052. Google Scholar

[5]

A. Artigue, M. J. Pacífico and J. Vieitez, N-expansive homeomorphisms on surfaces Communications in Contemporary Mathematics 19 (2017), 1650040, 18pp. doi: 10.1142/S0219199716500401. Google Scholar

[6]

R. Bowen, Periodic points and measures for Axiom A diffeomorphisms, Trans. Amer. Math. Soc., 154 (1971), 377-397. doi: 10.1090/S0002-9947-1971-0282372-0. Google Scholar

[7]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414. doi: 10.1090/S0002-9947-1971-0274707-X. Google Scholar

[8]

B. Carvalho and W. Cordeiro, N-expansive homeomorphisms with the shadowing property, Journal of Differential Equations, 261 (2016), 3734-3755. doi: 10.1016/j.jde.2016.06.003. Google Scholar

[9]

B. Carvalho and D. Kwietniak, On homeomorphisms with the two-sided limit shadowing property, J. Math Anal. Appl., 420 (2014), 801-813. doi: 10.1016/j.jmaa.2014.06.011. Google Scholar

[10]

A. CastroK. Oliveira and V. Pinheiro, Shadowing by non-uniformly hyperbolic periodic points and uniform hyperbolicity, Nonlinearity, 20 (2007), 75-85. doi: 10.1088/0951-7715/20/1/005. Google Scholar

[11]

M. Denker, S. Senti and X. Zhang, Fluctuations of ergodic sums over periodic orbits under specification, Preprint.Google Scholar

[12]

T. EirolaO. Nevanlinna and S. Pilyugin, Limit shadowing property, Numer. Funct. Anal. Optim., 18 (1997), 75-92. doi: 10.1080/01630569708816748. Google Scholar

[13]

P. Kościelniak, On genericity of shadowing and periodic shadowing property, J. Math. Anal. Appl., 310 (2005), 188-196. doi: 10.1016/j.jmaa.2005.01.053. Google Scholar

[14]

H. Kato, Continuum-wise expansive homeomorphisms, Canad. J. Math., 45 (1993), 576-598. doi: 10.4153/CJM-1993-030-4. Google Scholar

[15]

C. A. Morales, A generalization of expansivity, Discrete Contin. Dyn. Syst, 32 (2012), 293-301. doi: 10.3934/dcds.2012.32.293. Google Scholar

[16]

C. A. Morales and V. F. Sirvent, Expansive Measures 29 Colóquio Brasileiro de Matemática, 2013. Google Scholar

[17]

A. V. OsipovS. Y. Pilyugin and S. Tikhomirov, Periodic shadowing and $Ω$-stability, Regular and Chaotic Dynamics, 15 (2010), 404-417. doi: 10.1134/S1560354710020255. Google Scholar

[18]

S. Y. Pilyugin, Shadowing in structurally stable flows, Journal of differential equations, 140 (1997), 238-265. doi: 10.1006/jdeq.1997.3295. Google Scholar

[19]

S. Y. Pilyugin and S. Tikhomirov, Lipschitz shadowing implies structural stability, Nonlinearity, 23 (2010), 2509-2515. doi: 10.1088/0951-7715/23/10/009. Google Scholar

[20]

K. Sakai, Various shadowing properties for positively expansive maps, Topology and its Applications, 131 (2003), 15-31. doi: 10.1016/S0166-8641(02)00260-2. Google Scholar

[21]

S. Smale, Dynamical systems on n-dimensional manifolds, in Symposium on differential equations and dynamical systems (Puerto Rico) Academic Press, New York, 1967. Google Scholar

[22]

W. R. Utz, Unstable homeomorphisms, Proc. Amer. Math. Soc., 1 (1950), 769-774. doi: 10.1090/S0002-9939-1950-0038022-3. Google Scholar

[1]

Welington Cordeiro, Manfred Denker, Xuan Zhang. Corrigendum to: On specification and measure expansiveness. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3705-3706. doi: 10.3934/dcds.2018160

[2]

V. M. Gundlach, Yu. Kifer. Expansiveness, specification, and equilibrium states for random bundle transformations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 89-120. doi: 10.3934/dcds.2000.6.89

[3]

Hadda Hmili. Non topologically weakly mixing interval exchanges. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1079-1091. doi: 10.3934/dcds.2010.27.1079

[4]

Nir Avni. Spectral and mixing properties of actions of amenable groups. Electronic Research Announcements, 2005, 11: 57-63.

[5]

Vladimir Müller, Aljoša Peperko. Lower spectral radius and spectral mapping theorem for suprema preserving mappings. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4117-4132. doi: 10.3934/dcds.2018179

[6]

Massimiliano Guzzo, Giancarlo Benettin. A spectral formulation of the Nekhoroshev theorem and its relevance for numerical and experimental data analysis. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 1-28. doi: 10.3934/dcdsb.2001.1.1

[7]

Sergei Yu. Pilyugin. Variational shadowing. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 733-737. doi: 10.3934/dcdsb.2010.14.733

[8]

Kazumine Moriyasu, Kazuhiro Sakai, Kenichiro Yamamoto. Regular maps with the specification property. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2991-3009. doi: 10.3934/dcds.2013.33.2991

[9]

Krzysztof Frączek, Leonid Polterovich. Growth and mixing. Journal of Modern Dynamics, 2008, 2 (2) : 315-338. doi: 10.3934/jmd.2008.2.315

[10]

Lorenzo J. Díaz, Todd Fisher, M. J. Pacifico, José L. Vieitez. Entropy-expansiveness for partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4195-4207. doi: 10.3934/dcds.2012.32.4195

[11]

Grant Cairns, Barry Jessup, Marcel Nicolau. Topologically transitive homeomorphisms of quotients of tori. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 291-300. doi: 10.3934/dcds.1999.5.291

[12]

Piotr Oprocha. Specification properties and dense distributional chaos. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 821-833. doi: 10.3934/dcds.2007.17.821

[13]

Welington Cordeiro, Manfred Denker, Michiko Yuri. A note on specification for iterated function systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3475-3485. doi: 10.3934/dcdsb.2015.20.3475

[14]

Keonhee Lee, Kazuhiro Sakai. Various shadowing properties and their equivalence. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 533-540. doi: 10.3934/dcds.2005.13.533

[15]

Shaobo Gan. A generalized shadowing lemma. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 627-632. doi: 10.3934/dcds.2002.8.627

[16]

Sergey V. Bolotin. Shadowing chains of collision orbits. Discrete & Continuous Dynamical Systems - A, 2006, 14 (2) : 235-260. doi: 10.3934/dcds.2006.14.235

[17]

S. Yu. Pilyugin, A. A. Rodionova, Kazuhiro Sakai. Orbital and weak shadowing properties. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 287-308. doi: 10.3934/dcds.2003.9.287

[18]

S. Yu. Pilyugin. Inverse shadowing by continuous methods. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 29-38. doi: 10.3934/dcds.2002.8.29

[19]

Sergey Kryzhevich, Sergey Tikhomirov. Partial hyperbolicity and central shadowing. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2901-2909. doi: 10.3934/dcds.2013.33.2901

[20]

Lianfa He, Hongwen Zheng, Yujun Zhu. Shadowing in random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 355-362. doi: 10.3934/dcds.2005.12.355

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (24)
  • HTML views (15)
  • Cited by (0)

Other articles
by authors

[Back to Top]