March  2017, 37(3): 1559-1574. doi: 10.3934/dcds.2017064

Subharmonic solutions and minimal periodic solutions of first-order Hamiltonian systems with anisotropic growth

School of Mathematics and LPMC, Nankai University, Tianjin 300071, China

* Corresponding author: Chungen Liu

Received  June 2016 Revised  October 2016 Published  December 2016

Fund Project: The first author is supported partially by the NSF of China (11071127,10621101), 973 Program of MOST (2011CB808002) and SRFDP

Using a homologically link theorem in variational theory and iteration inequalities of Maslov-type index, we show the existence of a sequence of subharmonic solutions of non-autonomous Hamiltonian systems with the Hamiltonian functions satisfying some anisotropic growth conditions, i.e., the Hamiltonian functions may have simultaneously, in different components, superquadratic, subquadratic and quadratic behaviors. Moreover, we also consider the minimal period problem of some autonomous Hamiltonian systems with anisotropic growth.

Citation: Chungen Liu, Xiaofei Zhang. Subharmonic solutions and minimal periodic solutions of first-order Hamiltonian systems with anisotropic growth. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1559-1574. doi: 10.3934/dcds.2017064
References:
[1]

A. Abbondandolo, Morse Theory for Hamiltonian Systems Chapman, Hall, London, 2001. Google Scholar

[2]

T. An and Z. Wang, Periodic solutions of Hamiltonian systems with anisotropic growth, Commun. Pure Appl. Anal., 9 (2010), 1069-1082. doi: 10.3934/cpaa.2010.9.1069. Google Scholar

[3]

K. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems Birkh-äuser, Boston, 1993. doi: 10.1007/978-1-4612-0385-8. Google Scholar

[4]

S. Chen and C. Tang, Periodic and subharmonic solutions of a class of superquadratic Hamiltonian systems, J. Math. Anal. Appl., 297 (2004), 267-284. doi: 10.1016/j.jmaa.2004.05.006. Google Scholar

[5]

D. Dong and Y. Long, The iteration formula of the Maslov-type index theory with applications to nonlinear Hamiltonian systems, Trans. Amer. Math. Soc., 349 (1997), 2619-2661. doi: 10.1090/S0002-9947-97-01718-2. Google Scholar

[6]

I. Ekeland, Convexity Methods in Hamiltonian Mechanics Springer, Berlin, 1990. doi: 10.1007/978-3-642-74331-3. Google Scholar

[7]

I. Ekeland and H. Hofer, Subharmonics of convex nonautonomous Hamiltonian systems, Comm. Pure Appl. Math., 40 (1987), 1-36. doi: 10.1002/cpa.3160400102. Google Scholar

[8]

G. Fei, Relative morse index and its application to Hamiltonian systems in the presence of symmetries, J. Differential Equations, 122 (1995), 302-315. doi: 10.1006/jdeq.1995.1150. Google Scholar

[9]

G. Fei, On periodic solutions of superquadratic Hamiltonian systems, Electron. J. Differential Equations, 8 (2002), 1-12. Google Scholar

[10]

G. Fei and Q. Qiu, Periodic solutions of asymptotically linear Hamiltonian systems, Chinese Ann. Math. Ser. B, 18 (1997), 359-372. Google Scholar

[11]

G. Fei and Q. Qiu, Minimal period solutions of nonlinear Hamiltonian systems, Nonlinear Anal., 27 (1996), 821-839. doi: 10.1016/0362-546X(95)00077-9. Google Scholar

[12]

G. FeiS. Kim and T. Wang, Minimal period estimates of periodic solutions for superquadratic Hamiltonian systmes, J. Math. Anal. Appl., 238 (1999), 216-233. doi: 10.1006/jmaa.1999.6527. Google Scholar

[13]

P. L. Felmer, Periodic solutions of ''superquadratic'' Hamiltonian systems, J. Differential Equations, 102 (1993), 188-207. doi: 10.1006/jdeq.1993.1027. Google Scholar

[14]

C. Li, Brake subharmonic solutions of subquadratic Hamiltonian systems, Chin. Ann. Math. Ser. B, 37 (2016), 405-418. doi: 10.1007/s11401-016-0970-8. Google Scholar

[15]

C. Li, The study of minimal period estimates for brake orbits of autonomous subquadratic Hamiltonian systems, Acta Math. Sin. (Engl. Ser.), 31 (2015), 1645-1658. doi: 10.1007/s10114-015-4421-3. Google Scholar

[16]

C. Li and C. Liu, Brake subharmonic solutions of first order Hamiltonian systems, Sci. China Math., 53 (2010), 2719-2732. doi: 10.1007/s11425-010-4105-5. Google Scholar

[17]

C. LiZ. Ou and C. Tang, Periodic and subharmonic solutions for a class of non-autonomous Hamiltonian systems, Nonlinear Anal., 75 (2012), 2262-2272. doi: 10.1016/j.na.2011.10.026. Google Scholar

[18]

C. Liu, Subharmonic solutions of Hamiltonian systems, Nonlinear Anal., 42 (2000), 185-198. doi: 10.1016/S0362-546X(98)00339-3. Google Scholar

[19]

C. Liu, Minimal period estimates for brake orbits of nonlinear symmetric Hamiltonian systems, Discrete Contin. Dyn. Syst., 27 (2010), 337-355. doi: 10.3934/dcds.2010.27.337. Google Scholar

[20]

C. Liu, {Relative index theories and applications}, preprint.Google Scholar

[21]

C. Liu and Y. Long, Iteration inequalities of the Maslov-type index theory with applications, J. Differential Equations, 165 (2000), 355-376. doi: 10.1006/jdeq.2000.3775. Google Scholar

[22]

C. Liu and S. Tang, Subharmonic P-solutions of first order Hamiltonian systems, preprint.Google Scholar

[23]

C. Liu and S. Tang, Iteration inequalities of the Maslov P-index theory with applications, Nonlinear Anal., 127 (2015), 215-234. doi: 10.1016/j.na.2015.06.029. Google Scholar

[24]

Y. Long, Index Theory for Symplectic Paths with Applications Birkhauser Verlag Basel · Boston · Berlin, 2002. doi: 10.1007/978-3-0348-8175-3. Google Scholar

[25]

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2061-7. Google Scholar

[26]

R. Michalek and G. Tarantello, Subharmonic solutions with prescribed minimal period for nonautonomous Hamiltonian systems, J. Differential Equations, 72 (1988), 28-55. doi: 10.1016/0022-0396(88)90148-9. Google Scholar

[27]

K. Perera and M. Schechter, Topics in Critical Point Theory Cambridge University Press, 2013. Google Scholar

[28]

P. H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 31 (1978), 157-184. doi: 10.1002/cpa.3160310203. Google Scholar

[29]

P. H. Rabinowitz, On subhamonic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 33 (1980), 609-633. doi: 10.1002/cpa.3160330504. Google Scholar

[30]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations CBMS Reg. Conf. Ser. Math. 65, American Mathematical Society, Providence, 1986. doi: 10.1090/cbms/065. Google Scholar

[31]

E. Silva, Subharmonic solutions for subquadratic Hamiltonian systems, J. Differential Equations, 115 (1995), 120-145. doi: 10.1006/jdeq.1995.1007. Google Scholar

[32]

Q. XingF. Guo and X. Zhang, One generalized critical point theorem and its applications on super-quadratic Hamiltonian systems, Taiwanese J. Math., 20 (2016), 1093-1116. doi: 10.11650/tjm.20.2016.7128. Google Scholar

[33]

D. Zhang, Symmetric period solutions with prescribed minimal period for even autonomous semipositive Hamiltonian systems, Sci. China Math., 57 (2014), 81-96. Google Scholar

[34]

X. Zhang and F. Guo, Existence of periodic solutions of a particular type of super-quadratic Hamiltonian systems, J. Math. Anal. Appl., 421 (2015), 1587-1602. doi: 10.1016/j.jmaa.2014.08.006. Google Scholar

[35]

X. Zhang and F. Guo, Multiplicity of Subharmonic Solutions and Periodic Solutions of a Particular Type of Super-quadratic Hamiltonian Systems, Commun. Pure Appl. Anal., 15 (2016), 1625-1642. doi: 10.3934/cpaa.2016005. Google Scholar

show all references

References:
[1]

A. Abbondandolo, Morse Theory for Hamiltonian Systems Chapman, Hall, London, 2001. Google Scholar

[2]

T. An and Z. Wang, Periodic solutions of Hamiltonian systems with anisotropic growth, Commun. Pure Appl. Anal., 9 (2010), 1069-1082. doi: 10.3934/cpaa.2010.9.1069. Google Scholar

[3]

K. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems Birkh-äuser, Boston, 1993. doi: 10.1007/978-1-4612-0385-8. Google Scholar

[4]

S. Chen and C. Tang, Periodic and subharmonic solutions of a class of superquadratic Hamiltonian systems, J. Math. Anal. Appl., 297 (2004), 267-284. doi: 10.1016/j.jmaa.2004.05.006. Google Scholar

[5]

D. Dong and Y. Long, The iteration formula of the Maslov-type index theory with applications to nonlinear Hamiltonian systems, Trans. Amer. Math. Soc., 349 (1997), 2619-2661. doi: 10.1090/S0002-9947-97-01718-2. Google Scholar

[6]

I. Ekeland, Convexity Methods in Hamiltonian Mechanics Springer, Berlin, 1990. doi: 10.1007/978-3-642-74331-3. Google Scholar

[7]

I. Ekeland and H. Hofer, Subharmonics of convex nonautonomous Hamiltonian systems, Comm. Pure Appl. Math., 40 (1987), 1-36. doi: 10.1002/cpa.3160400102. Google Scholar

[8]

G. Fei, Relative morse index and its application to Hamiltonian systems in the presence of symmetries, J. Differential Equations, 122 (1995), 302-315. doi: 10.1006/jdeq.1995.1150. Google Scholar

[9]

G. Fei, On periodic solutions of superquadratic Hamiltonian systems, Electron. J. Differential Equations, 8 (2002), 1-12. Google Scholar

[10]

G. Fei and Q. Qiu, Periodic solutions of asymptotically linear Hamiltonian systems, Chinese Ann. Math. Ser. B, 18 (1997), 359-372. Google Scholar

[11]

G. Fei and Q. Qiu, Minimal period solutions of nonlinear Hamiltonian systems, Nonlinear Anal., 27 (1996), 821-839. doi: 10.1016/0362-546X(95)00077-9. Google Scholar

[12]

G. FeiS. Kim and T. Wang, Minimal period estimates of periodic solutions for superquadratic Hamiltonian systmes, J. Math. Anal. Appl., 238 (1999), 216-233. doi: 10.1006/jmaa.1999.6527. Google Scholar

[13]

P. L. Felmer, Periodic solutions of ''superquadratic'' Hamiltonian systems, J. Differential Equations, 102 (1993), 188-207. doi: 10.1006/jdeq.1993.1027. Google Scholar

[14]

C. Li, Brake subharmonic solutions of subquadratic Hamiltonian systems, Chin. Ann. Math. Ser. B, 37 (2016), 405-418. doi: 10.1007/s11401-016-0970-8. Google Scholar

[15]

C. Li, The study of minimal period estimates for brake orbits of autonomous subquadratic Hamiltonian systems, Acta Math. Sin. (Engl. Ser.), 31 (2015), 1645-1658. doi: 10.1007/s10114-015-4421-3. Google Scholar

[16]

C. Li and C. Liu, Brake subharmonic solutions of first order Hamiltonian systems, Sci. China Math., 53 (2010), 2719-2732. doi: 10.1007/s11425-010-4105-5. Google Scholar

[17]

C. LiZ. Ou and C. Tang, Periodic and subharmonic solutions for a class of non-autonomous Hamiltonian systems, Nonlinear Anal., 75 (2012), 2262-2272. doi: 10.1016/j.na.2011.10.026. Google Scholar

[18]

C. Liu, Subharmonic solutions of Hamiltonian systems, Nonlinear Anal., 42 (2000), 185-198. doi: 10.1016/S0362-546X(98)00339-3. Google Scholar

[19]

C. Liu, Minimal period estimates for brake orbits of nonlinear symmetric Hamiltonian systems, Discrete Contin. Dyn. Syst., 27 (2010), 337-355. doi: 10.3934/dcds.2010.27.337. Google Scholar

[20]

C. Liu, {Relative index theories and applications}, preprint.Google Scholar

[21]

C. Liu and Y. Long, Iteration inequalities of the Maslov-type index theory with applications, J. Differential Equations, 165 (2000), 355-376. doi: 10.1006/jdeq.2000.3775. Google Scholar

[22]

C. Liu and S. Tang, Subharmonic P-solutions of first order Hamiltonian systems, preprint.Google Scholar

[23]

C. Liu and S. Tang, Iteration inequalities of the Maslov P-index theory with applications, Nonlinear Anal., 127 (2015), 215-234. doi: 10.1016/j.na.2015.06.029. Google Scholar

[24]

Y. Long, Index Theory for Symplectic Paths with Applications Birkhauser Verlag Basel · Boston · Berlin, 2002. doi: 10.1007/978-3-0348-8175-3. Google Scholar

[25]

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2061-7. Google Scholar

[26]

R. Michalek and G. Tarantello, Subharmonic solutions with prescribed minimal period for nonautonomous Hamiltonian systems, J. Differential Equations, 72 (1988), 28-55. doi: 10.1016/0022-0396(88)90148-9. Google Scholar

[27]

K. Perera and M. Schechter, Topics in Critical Point Theory Cambridge University Press, 2013. Google Scholar

[28]

P. H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 31 (1978), 157-184. doi: 10.1002/cpa.3160310203. Google Scholar

[29]

P. H. Rabinowitz, On subhamonic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 33 (1980), 609-633. doi: 10.1002/cpa.3160330504. Google Scholar

[30]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations CBMS Reg. Conf. Ser. Math. 65, American Mathematical Society, Providence, 1986. doi: 10.1090/cbms/065. Google Scholar

[31]

E. Silva, Subharmonic solutions for subquadratic Hamiltonian systems, J. Differential Equations, 115 (1995), 120-145. doi: 10.1006/jdeq.1995.1007. Google Scholar

[32]

Q. XingF. Guo and X. Zhang, One generalized critical point theorem and its applications on super-quadratic Hamiltonian systems, Taiwanese J. Math., 20 (2016), 1093-1116. doi: 10.11650/tjm.20.2016.7128. Google Scholar

[33]

D. Zhang, Symmetric period solutions with prescribed minimal period for even autonomous semipositive Hamiltonian systems, Sci. China Math., 57 (2014), 81-96. Google Scholar

[34]

X. Zhang and F. Guo, Existence of periodic solutions of a particular type of super-quadratic Hamiltonian systems, J. Math. Anal. Appl., 421 (2015), 1587-1602. doi: 10.1016/j.jmaa.2014.08.006. Google Scholar

[35]

X. Zhang and F. Guo, Multiplicity of Subharmonic Solutions and Periodic Solutions of a Particular Type of Super-quadratic Hamiltonian Systems, Commun. Pure Appl. Anal., 15 (2016), 1625-1642. doi: 10.3934/cpaa.2016005. Google Scholar

[1]

Dawei Yang, Shaobo Gan, Lan Wen. Minimal non-hyperbolicity and index-completeness. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1349-1366. doi: 10.3934/dcds.2009.25.1349

[2]

Zongming Guo, Zhongyuan Liu, Juncheng Wei, Feng Zhou. Bifurcations of some elliptic problems with a singular nonlinearity via Morse index. Communications on Pure & Applied Analysis, 2011, 10 (2) : 507-525. doi: 10.3934/cpaa.2011.10.507

[3]

Philip Korman. Infinitely many solutions and Morse index for non-autonomous elliptic problems. Communications on Pure & Applied Analysis, 2020, 19 (1) : 31-46. doi: 10.3934/cpaa.2020003

[4]

Jiaquan Liu, Yuxia Guo, Pingan Zeng. Relationship of the morse index and the $L^\infty$ bound of solutions for a strongly indefinite differential superlinear system. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 107-119. doi: 10.3934/dcds.2006.16.107

[5]

Litismita Jena, Sabyasachi Pani. Index-range monotonicity and index-proper splittings of matrices. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 379-388. doi: 10.3934/naco.2013.3.379

[6]

Elisa Gorla, Maike Massierer. Index calculus in the trace zero variety. Advances in Mathematics of Communications, 2015, 9 (4) : 515-539. doi: 10.3934/amc.2015.9.515

[7]

Ha Pham, Plamen Stefanov. Weyl asymptotics of the transmission eigenvalues for a constant index of refraction. Inverse Problems & Imaging, 2014, 8 (3) : 795-810. doi: 10.3934/ipi.2014.8.795

[8]

Alexander Krasnosel'skii, Jean Mawhin. The index at infinity for some vector fields with oscillating nonlinearities. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 165-174. doi: 10.3934/dcds.2000.6.165

[9]

Chinmay Kumar Giri. Index-proper nonnegative splittings of matrices. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 103-113. doi: 10.3934/naco.2016002

[10]

Rafael Ortega. Stability and index of periodic solutions of a nonlinear telegraph equation. Communications on Pure & Applied Analysis, 2005, 4 (4) : 823-837. doi: 10.3934/cpaa.2005.4.823

[11]

Todd Young. A result in global bifurcation theory using the Conley index. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 387-396. doi: 10.3934/dcds.1996.2.387

[12]

Alexei Pokrovskii, Oleg Rasskazov. Structure of index sequences for mappings with an asymptotic derivative. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 653-670. doi: 10.3934/dcds.2007.17.653

[13]

Radoslaw Pytlak. Numerical procedure for optimal control of higher index DAEs. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 647-670. doi: 10.3934/dcds.2011.29.647

[14]

M. C. Carbinatto, K. Mischaikow. Horseshoes and the Conley index spectrum - II: the theorem is sharp. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 599-616. doi: 10.3934/dcds.1999.5.599

[15]

Stephen Campbell, Peter Kunkel. Solving higher index DAE optimal control problems. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 447-472. doi: 10.3934/naco.2016020

[16]

Yingjie Li, Xiaoguang Yang, Shushang Zhu, Dong-Hui Li. A hybrid approach for index tracking with practical constraints. Journal of Industrial & Management Optimization, 2014, 10 (3) : 905-927. doi: 10.3934/jimo.2014.10.905

[17]

Marius Mitrea. On Bojarski's index formula for nonsmooth interfaces. Electronic Research Announcements, 1999, 5: 40-46.

[18]

Lee Patrolia. Quantitative photoacoustic tomography with variable index of refraction. Inverse Problems & Imaging, 2013, 7 (1) : 253-265. doi: 10.3934/ipi.2013.7.253

[19]

Eugenio Aulisa, Lidia Bloshanskaya, Akif Ibragimov. Well productivity index for compressible fluids and gases. Evolution Equations & Control Theory, 2016, 5 (1) : 1-36. doi: 10.3934/eect.2016.5.1

[20]

Robert Skiba, Nils Waterstraat. The index bundle and multiparameter bifurcation for discrete dynamical systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5603-5629. doi: 10.3934/dcds.2017243

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (12)
  • HTML views (3)
  • Cited by (0)

Other articles
by authors

[Back to Top]