# American Institute of Mathematical Sciences

• Previous Article
Effect of cross-diffusion in the diffusion prey-predator model with a protection zone
• DCDS Home
• This Issue
• Next Article
Qualitative description of the particle trajectories for the N-solitons solution of the Korteweg-de Vries equation
March  2017, 37(3): 1509-1537. doi: 10.3934/dcds.2017062

## On the Cauchy problem for a generalized two-component shallow water wave system with fractional higher-order inertia operators

 1 Department of Mathematics, Sun Yat-sen University, Guangzhou 510275, China 2 Faculty of Information Technology, Macau University of Science and Technology, Macau, China

1Corresponding author

Received  June 2016 Revised  September 2016 Published  December 2016

Fund Project: This work was partially supported by NNSFC (No.11671407 and No.11271382), FDCT (No. 098/2013/A3), Guangdong Special Support Program (No. 8-2015), and the key project of NSF of Guangdong province (No. 2016A030311004)

In this paper, we mainly consider the Cauchy problem for a generalized two-component shallow water wave system with fractional higher-order inertia operators: $m=(1-\partial_x^2)^su, s>1$. By Littlewood-Paley theory and transport equation theory, we first establish the local well-posedness of the generalized b-equation with fractional higher-order inertia operators which is the subsystem of the generalized two-component water wave system. Then we prove the local well-posedness of the generalized two-component water wave system with fractional higher-order inertia operators. Next, we present the blow-up criteria for these systems. Moreover, we obtain some global existence results for these systems.

Citation: Huijun He, Zhaoyang Yin. On the Cauchy problem for a generalized two-component shallow water wave system with fractional higher-order inertia operators. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1509-1537. doi: 10.3934/dcds.2017062
##### References:

show all references

##### References:
 [1] Vural Bayrak, Emil Novruzov, Ibrahim Ozkol. Local-in-space blow-up criteria for two-component nonlinear dispersive wave system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 6023-6037. doi: 10.3934/dcds.2019263 [2] Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843 [3] Lei Zhang, Bin Liu. Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2655-2685. doi: 10.3934/dcds.2018112 [4] Katrin Grunert. Blow-up for the two-component Camassa--Holm system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2041-2051. doi: 10.3934/dcds.2015.35.2041 [5] Wenjing Zhao. Local well-posedness and blow-up criteria of magneto-viscoelastic flows. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4637-4655. doi: 10.3934/dcds.2018203 [6] Yongsheng Mi, Boling Guo, Chunlai Mu. Well-posedness and blow-up scenario for a new integrable four-component system with peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2171-2191. doi: 10.3934/dcds.2016.36.2171 [7] Joachim Escher, Tony Lyons. Two-component higher order Camassa-Holm systems with fractional inertia operator: A geometric approach. Journal of Geometric Mechanics, 2015, 7 (3) : 281-293. doi: 10.3934/jgm.2015.7.281 [8] Zhaoyang Yin. Well-posedness, blowup, and global existence for an integrable shallow water equation. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 393-411. doi: 10.3934/dcds.2004.11.393 [9] Xiuting Li, Lei Zhang. The Cauchy problem and blow-up phenomena for a new integrable two-component peakon system with cubic nonlinearities. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3301-3325. doi: 10.3934/dcds.2017140 [10] Joachim Escher, Olaf Lechtenfeld, Zhaoyang Yin. Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 493-513. doi: 10.3934/dcds.2007.19.493 [11] Kai Yan, Zhaoyang Yin. Well-posedness for a modified two-component Camassa-Holm system in critical spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1699-1712. doi: 10.3934/dcds.2013.33.1699 [12] Xinwei Yu, Zhichun Zhai. On the Lagrangian averaged Euler equations: local well-posedness and blow-up criterion. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1809-1823. doi: 10.3934/cpaa.2012.11.1809 [13] Xi Tu, Zhaoyang Yin. Local well-posedness and blow-up phenomena for a generalized Camassa-Holm equation with peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2781-2801. doi: 10.3934/dcds.2016.36.2781 [14] Luigi Forcella, Kazumasa Fujiwara, Vladimir Georgiev, Tohru Ozawa. Local well-posedness and blow-up for the half Ginzburg-Landau-Kuramoto equation with rough coefficients and potential. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2661-2678. doi: 10.3934/dcds.2019111 [15] Tarek Saanouni. A note on global well-posedness and blow-up of some semilinear evolution equations. Evolution Equations & Control Theory, 2015, 4 (3) : 355-372. doi: 10.3934/eect.2015.4.355 [16] Ying Fu, Changzheng Qu, Yichen Ma. Well-posedness and blow-up phenomena for the interacting system of the Camassa-Holm and Degasperis-Procesi equations. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1025-1035. doi: 10.3934/dcds.2010.27.1025 [17] Qiaoyi Hu, Zhixin Wu, Yumei Sun. Liouville theorems for periodic two-component shallow water systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 3085-3097. doi: 10.3934/dcds.2018134 [18] David F. Parker. Higher-order shallow water equations and the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 629-641. doi: 10.3934/dcdsb.2007.7.629 [19] Hongqiu Chen. Well-posedness for a higher-order, nonlinear, dispersive equation on a quarter plane. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 397-429. doi: 10.3934/dcds.2018019 [20] Zhaoyang Yin. Well-posedness and blow-up phenomena for the periodic generalized Camassa-Holm equation. Communications on Pure & Applied Analysis, 2004, 3 (3) : 501-508. doi: 10.3934/cpaa.2004.3.501

2018 Impact Factor: 1.143