• Previous Article
    On the Cauchy problem for a generalized two-component shallow water wave system with fractional higher-order inertia operators
  • DCDS Home
  • This Issue
  • Next Article
    Homogenization of second order discrete model with local perturbation and application to traffic flow
March  2017, 37(3): 1489-1507. doi: 10.3934/dcds.2017061

Qualitative description of the particle trajectories for the N-solitons solution of the Korteweg-de Vries equation

Sorbonnes Universités, UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis, Lions F-75005, Paris, France

Received  October 2015 Revised  October 2016 Published  December 2016

Fund Project: LG is supported by FQRNT and by ERC advanced grant 266907 (CPDENL) of the 7th Research Framework Programme (FP7)

The qualitative properties of the particle trajectories of the $N$-solitons solution of the KdV equation are recovered from the first order velocity field by the introduction of the stream function. Numerical simulations show an accurate depth dependance of the particles trajectories for solitary waves. Failure of the free surface kinematic boundary condition for the first order type velocity field is highlighted.

Citation: Ludovick Gagnon. Qualitative description of the particle trajectories for the N-solitons solution of the Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1489-1507. doi: 10.3934/dcds.2017061
References:
[1]

A. Ali and H. Kalisch, A dispersive model for undular bores, Anal. Math. Phys., 2 (2012), 347-366. doi: 10.1007/s13324-012-0040-7. Google Scholar

[2]

J. L. BonaM. Chen and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. Ⅱ. The nonlinear theory, Nonlinearity, 17 (2004), 925-952. doi: 10.1088/0951-7715/17/3/010. Google Scholar

[3]

H. Borluk and H. Kalisch, Particle dynamics in the KdV approximation, Wave Motion, 49 (2012), 691-709. doi: 10.1016/j.wavemoti.2012.04.007. Google Scholar

[4]

J. Boussinesq, Essai sur la théorie des eaux courantes, (French) [Essay on the theory of running water], Mémoires présentés par divers savant á l'Acad. des Sci. Inst. Nat. France, ⅩⅩⅢ, (1877), 1-680. Google Scholar

[5]

Y.-Y. ChenH.-C. Hsu and H.-H. Hwung, Experimental study of the particle paths in solitary water waves, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 370 (2012), 1629-1637. Google Scholar

[6]

A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535. doi: 10.1007/s00222-006-0002-5. Google Scholar

[7]

A. Constantin, Solitons from the Lagrangian perspective, Discrete Continuous Dynam. Systems -A, 19 (2007), 469-481. doi: 10.3934/dcds.2007.19.469. Google Scholar

[8]

A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2011. doi: 10.1137/1.9781611971873. Google Scholar

[9]

A. Constantin and J. Escher, Particle trajectories in solitary water waves, Bull. Amer. Math. Soc. (N.S.), 44 (2007), 423-431. doi: 10.1090/S0273-0979-07-01159-7. Google Scholar

[10]

A. Constantin and R. S. Johnson, On the non-dimensionalisation, scaling and resulting interpretation of the classical governing equations for water waves, J. Nonlinear Math. Phys., 15 (2008), 58-73. doi: 10.2991/jnmp.2008.15.s2.5. Google Scholar

[11]

A. Constantin and W. Strauss, Pressure beneath a Stokes wave, Comm. Pure Appl. Math., 63 (2010), 533-557. doi: 10.1002/cpa.20299. Google Scholar

[12]

A. Constantin and G. Villari, Particle trajectories in linear water waves, J. Math. Fluid Mech., 10 (2008), 1-18. doi: 10.1007/s00021-005-0214-2. Google Scholar

[13]

C. S. GardnerJ. M. GreeneM. D. Kruskal and R. M. Miura, Method for solving the Korteweg-deVries equation, Phys. Rev. Letters, 19 (1967), 1095-1097. doi: 10.1103/PhysRevLett.19.1095. Google Scholar

[14]

C. S. GardnerJ. M. GreeneM. D. Kruskal and R. M. Miura, Korteweg-deVries equation and generalization. {VI}. {M}ethods for exact solution, Comm. Pure Appl. Math., 27 (1974), 97-133. doi: 10.1002/cpa.3160270108. Google Scholar

[15]

D. Henry, Steady periodic flow induced by the Korteweg-de Vries equation, Wave Motion, 46 (2009), 403-411. doi: 10.1016/j.wavemoti.2009.06.007. Google Scholar

[16]

R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Physical Review Letters, 27 (1971), 1192-1194. doi: 10.1103/PhysRevLett.27.1192. Google Scholar

[17]

R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves Cambridge University Press, Cambridge, 1997. doi: 10.1017/CBO9780511624056. Google Scholar

[18]

H. Kalisch, Personal communications.Google Scholar

[19]

D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag., 39 (1895), 422-443. doi: 10.1080/14786449508620739. Google Scholar

[20]

J. S. Russell, Report on Waves, Report of the fourteenth meeting of the British Association for the Advancement of Science 39 (1844).Google Scholar

[21]

G. B. Whitham, Linear and Nonlinear Waves Wiley-Interscience [John Wiley & Sons], New-York, 1974. Google Scholar

[22]

N. J. Zabusky and M. D. Kruskal, Interaction of "solitons" in a collisionless plasma and the recurrence of initial states, Physical Review Letters, 15 (1965), 240-243. doi: 10.1103/PhysRevLett.15.240. Google Scholar

show all references

References:
[1]

A. Ali and H. Kalisch, A dispersive model for undular bores, Anal. Math. Phys., 2 (2012), 347-366. doi: 10.1007/s13324-012-0040-7. Google Scholar

[2]

J. L. BonaM. Chen and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. Ⅱ. The nonlinear theory, Nonlinearity, 17 (2004), 925-952. doi: 10.1088/0951-7715/17/3/010. Google Scholar

[3]

H. Borluk and H. Kalisch, Particle dynamics in the KdV approximation, Wave Motion, 49 (2012), 691-709. doi: 10.1016/j.wavemoti.2012.04.007. Google Scholar

[4]

J. Boussinesq, Essai sur la théorie des eaux courantes, (French) [Essay on the theory of running water], Mémoires présentés par divers savant á l'Acad. des Sci. Inst. Nat. France, ⅩⅩⅢ, (1877), 1-680. Google Scholar

[5]

Y.-Y. ChenH.-C. Hsu and H.-H. Hwung, Experimental study of the particle paths in solitary water waves, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 370 (2012), 1629-1637. Google Scholar

[6]

A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535. doi: 10.1007/s00222-006-0002-5. Google Scholar

[7]

A. Constantin, Solitons from the Lagrangian perspective, Discrete Continuous Dynam. Systems -A, 19 (2007), 469-481. doi: 10.3934/dcds.2007.19.469. Google Scholar

[8]

A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2011. doi: 10.1137/1.9781611971873. Google Scholar

[9]

A. Constantin and J. Escher, Particle trajectories in solitary water waves, Bull. Amer. Math. Soc. (N.S.), 44 (2007), 423-431. doi: 10.1090/S0273-0979-07-01159-7. Google Scholar

[10]

A. Constantin and R. S. Johnson, On the non-dimensionalisation, scaling and resulting interpretation of the classical governing equations for water waves, J. Nonlinear Math. Phys., 15 (2008), 58-73. doi: 10.2991/jnmp.2008.15.s2.5. Google Scholar

[11]

A. Constantin and W. Strauss, Pressure beneath a Stokes wave, Comm. Pure Appl. Math., 63 (2010), 533-557. doi: 10.1002/cpa.20299. Google Scholar

[12]

A. Constantin and G. Villari, Particle trajectories in linear water waves, J. Math. Fluid Mech., 10 (2008), 1-18. doi: 10.1007/s00021-005-0214-2. Google Scholar

[13]

C. S. GardnerJ. M. GreeneM. D. Kruskal and R. M. Miura, Method for solving the Korteweg-deVries equation, Phys. Rev. Letters, 19 (1967), 1095-1097. doi: 10.1103/PhysRevLett.19.1095. Google Scholar

[14]

C. S. GardnerJ. M. GreeneM. D. Kruskal and R. M. Miura, Korteweg-deVries equation and generalization. {VI}. {M}ethods for exact solution, Comm. Pure Appl. Math., 27 (1974), 97-133. doi: 10.1002/cpa.3160270108. Google Scholar

[15]

D. Henry, Steady periodic flow induced by the Korteweg-de Vries equation, Wave Motion, 46 (2009), 403-411. doi: 10.1016/j.wavemoti.2009.06.007. Google Scholar

[16]

R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Physical Review Letters, 27 (1971), 1192-1194. doi: 10.1103/PhysRevLett.27.1192. Google Scholar

[17]

R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves Cambridge University Press, Cambridge, 1997. doi: 10.1017/CBO9780511624056. Google Scholar

[18]

H. Kalisch, Personal communications.Google Scholar

[19]

D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag., 39 (1895), 422-443. doi: 10.1080/14786449508620739. Google Scholar

[20]

J. S. Russell, Report on Waves, Report of the fourteenth meeting of the British Association for the Advancement of Science 39 (1844).Google Scholar

[21]

G. B. Whitham, Linear and Nonlinear Waves Wiley-Interscience [John Wiley & Sons], New-York, 1974. Google Scholar

[22]

N. J. Zabusky and M. D. Kruskal, Interaction of "solitons" in a collisionless plasma and the recurrence of initial states, Physical Review Letters, 15 (1965), 240-243. doi: 10.1103/PhysRevLett.15.240. Google Scholar

Figure 1.  A soliton solution of (1) represented in the Cartesian coordinates.
Figure 2.  The orbits of water particles obtained from the experimental measurements of the polystyrene beads motions at different water levels $b$ in the four experimental wave cases (a) $h_0$=20cm, $a$=7.07cm; (b) $h_0$=20cm, $a$=8.56cm; (c) $h_0$=30cm, $a$=5.46cm; (d) $h_0$=30cm, $a$=7.56cm.
Figure 3.  Interaction between two solitons. The cross (resp. circle) represents the position of the maximum of the faster (resp. slower) soliton if no interaction would have occured. Figure a) is the state of the $2$-solitons solution before the interaction and b) is the state after the interaction. The frame is fixed at the speed of the slower soliton.
Figure 4.  Comparison of the numerical approximation of the particle trajectories for the first order velocity field (top left) and the higher order velocity field (top right). Zoom on the end of the particle trajectories for the first order velocity field (bottom left) and the higher order velocity field (bottom right). The depth of the fluid is 30 cm and the height of the solitary wave is 5.46 cm. The dashed line represents the undisturbed water surface.
Figure 5.  Total displacement ($X$) in the x variable and maximal displacement ($Y$) in the y variable with respect to the initial vertical position above the flat bottom of the particle $b$ for the first order velocity field ($1^{st}$), the higher velocity field (Hi.) and the experimental results (Exp.).
Figure 6.  Numerical approximation of the particle trajectories for the 2-solitons solution. The particles trajectories are in black, the initial position of the 2-solitons is in dashed black and the final position is in gray. The height of the soliton in front is 0.4cm and the soliton behind is 0.3cm. The depth of the water is 1cm.
[1]

Eduardo Cerpa. Control of a Korteweg-de Vries equation: A tutorial. Mathematical Control & Related Fields, 2014, 4 (1) : 45-99. doi: 10.3934/mcrf.2014.4.45

[2]

M. Agrotis, S. Lafortune, P.G. Kevrekidis. On a discrete version of the Korteweg-De Vries equation. Conference Publications, 2005, 2005 (Special) : 22-29. doi: 10.3934/proc.2005.2005.22

[3]

Anne de Bouard, Eric Gautier. Exit problems related to the persistence of solitons for the Korteweg-de Vries equation with small noise. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 857-871. doi: 10.3934/dcds.2010.26.857

[4]

Guolian Wang, Boling Guo. Stochastic Korteweg-de Vries equation driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5255-5272. doi: 10.3934/dcds.2015.35.5255

[5]

Muhammad Usman, Bing-Yu Zhang. Forced oscillations of the Korteweg-de Vries equation on a bounded domain and their stability. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1509-1523. doi: 10.3934/dcds.2010.26.1509

[6]

Eduardo Cerpa, Emmanuelle Crépeau. Rapid exponential stabilization for a linear Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 655-668. doi: 10.3934/dcdsb.2009.11.655

[7]

Pierre Garnier. Damping to prevent the blow-up of the korteweg-de vries equation. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1455-1470. doi: 10.3934/cpaa.2017069

[8]

Zhaosheng Feng, Yu Huang. Approximate solution of the Burgers-Korteweg-de Vries equation. Communications on Pure & Applied Analysis, 2007, 6 (2) : 429-440. doi: 10.3934/cpaa.2007.6.429

[9]

Arnaud Debussche, Jacques Printems. Convergence of a semi-discrete scheme for the stochastic Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 761-781. doi: 10.3934/dcdsb.2006.6.761

[10]

Qifan Li. Local well-posedness for the periodic Korteweg-de Vries equation in analytic Gevrey classes. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1097-1109. doi: 10.3934/cpaa.2012.11.1097

[11]

Shou-Fu Tian. Initial-boundary value problems for the coupled modified Korteweg-de Vries equation on the interval. Communications on Pure & Applied Analysis, 2018, 17 (3) : 923-957. doi: 10.3934/cpaa.2018046

[12]

Roberto A. Capistrano-Filho, Shuming Sun, Bing-Yu Zhang. General boundary value problems of the Korteweg-de Vries equation on a bounded domain. Mathematical Control & Related Fields, 2018, 8 (3&4) : 583-605. doi: 10.3934/mcrf.2018024

[13]

John P. Albert. A uniqueness result for 2-soliton solutions of the Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3635-3670. doi: 10.3934/dcds.2019149

[14]

Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control & Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61

[15]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Global stabilization of a coupled system of two generalized Korteweg-de Vries type equations posed on a finite domain. Mathematical Control & Related Fields, 2011, 1 (3) : 353-389. doi: 10.3934/mcrf.2011.1.353

[16]

Netra Khanal, Ramjee Sharma, Jiahong Wu, Juan-Ming Yuan. A dual-Petrov-Galerkin method for extended fifth-order Korteweg-de Vries type equations. Conference Publications, 2009, 2009 (Special) : 442-450. doi: 10.3934/proc.2009.2009.442

[17]

Brian Pigott. Polynomial-in-time upper bounds for the orbital instability of subcritical generalized Korteweg-de Vries equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 389-418. doi: 10.3934/cpaa.2014.13.389

[18]

Olivier Goubet. Asymptotic smoothing effect for weakly damped forced Korteweg-de Vries equations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 625-644. doi: 10.3934/dcds.2000.6.625

[19]

Terence Tao. Two remarks on the generalised Korteweg de-Vries equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 1-14. doi: 10.3934/dcds.2007.18.1

[20]

Massimiliano Gubinelli. Rough solutions for the periodic Korteweg--de~Vries equation. Communications on Pure & Applied Analysis, 2012, 11 (2) : 709-733. doi: 10.3934/cpaa.2012.11.709

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (5)
  • Cited by (0)

Other articles
by authors

[Back to Top]