American Institute of Mathematical Sciences

March  2017, 37(3): 1437-1487. doi: 10.3934/dcds.2017060

Homogenization of second order discrete model with local perturbation and application to traffic flow

 Normandie Univ, INSA de Rouen Normandie, LMI (EA 3226 -FR CNRS 3335), 76000 Rouen, France, 685 Avenue de l'Université, 76801 St Etienne du Rouvray cedex, France

Received  May 2016 Revised  November 2016 Published  December 2016

The goal of this paper is to derive a traffic flow macroscopic model from a second order microscopic model with a local perturbation. At the microscopic scale, we consider a Bando model of the type following the leader, i.e the acceleration of each vehicle depends on the distance of the vehicle in front of it. We consider also a local perturbation like an accident at the roadside that slows down the vehicles. After rescaling, we prove that the "cumulative distribution functions" of the vehicles converges towards the solution of a macroscopic homogenized Hamilton-Jacobi equation with a flux limiting condition at junction which can be seen as a LWR (Lighthill-Whitham-Richards) model.

Citation: Nicolas Forcadel, Wilfredo Salazar, Mamdouh Zaydan. Homogenization of second order discrete model with local perturbation and application to traffic flow. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1437-1487. doi: 10.3934/dcds.2017060
References:
 [1] Y. Achdou and N. Tchou, Hamilton-jacobi equations on networks as limits of singularly perturbed problems in optimal control: Dimension reduction, Communications in Partial Differential Equations, 40 (2015), 652-693. doi: 10.1080/03605302.2014.974764. Google Scholar [2] O. Alvarez and A. Tourin, Viscosity solutions of nonlinear integro-differential equations, Annales de l'Institut Henri Poincaré. Analyse non linéaire, 13 (1996), 293-317. doi: 10.1016/j.anihpc.2007.02.007. Google Scholar [3] A. Aw, A. Klar, M. Rascle and T. Materne, Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM Journal on Applied Mathematics, 63 (2002), 259-278. doi: 10.1137/S0036139900380955. Google Scholar [4] M. Bando, K. Hasebe, A. Nakayama, A. Shibata and Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation Physical Review E 51 (1995), p1035. doi: 10.1103/PhysRevE.51.1035. Google Scholar [5] G. Barles, Solutions de Viscosité des Équations de Hamilton-Jacobi Springer Verlag, 1994. Google Scholar [6] M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bulletin of the American Mathematical Society, 27 (1992), 1-67. doi: 10.1090/S0273-0979-1992-00266-5. Google Scholar [7] F. Da Lio, N. Forcadel and R. Monneau, Convergence of a non-local eikonal equation to anisotropic mean curvature motion. Application to dislocation dynamics, J. Eur. Math. Soc. (JEMS), 10 (2008), 1061-1104. doi: 10.4171/JEMS/140. Google Scholar [8] M. Di Francesco and M. D. Rosini, Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, Arch. Ration. Mech. Anal., 217 (2015), 831-871. doi: 10.1007/s00205-015-0843-4. Google Scholar [9] N. Forcadel, C. Imbert and R. Monneau, Homogenization of fully overdamped frenkel-kontorova models, Journal of Differential Equations, 246 (2009), 1057-1097. doi: 10.1016/j.jde.2008.06.034. Google Scholar [10] N. Forcadel, C. Imbert and R. Monneau, Homogenization of some particle systems with two-body interactions and of the dislocation dynamics, Discrete Contin. Dyn. Syst., 23 (2009), 785-826. doi: 10.3934/dcds.2009.23.785. Google Scholar [11] N. Forcadel, C. Imbert and R. Monneau, Homogenization of accelerated frenkel-kontorova models with n types of particles, Transactions of the American Mathematical Society, 364 (2012), 6187-6227. doi: 10.1090/S0002-9947-2012-05650-9. Google Scholar [12] N. Forcadel and W. Salazar, Homogenization of second order discrete model and application to traffic flow, Differential and Integral Equations, 28 (2015), 1039-1068. Google Scholar [13] N. Forcadel and W. Salazar, A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow, preprint, hal-01097085.Google Scholar [14] G. Galise, C. Imbert and R. Monneau, A junction condition by specified homogenization and application to traffic lights, Anal. PDE, 8 (2015), 1891-1929. doi: 10.2140/apde.2015.8.1891. Google Scholar [15] J. M. Greenberg, Extensions and amplifications of a traffic model of Aw and Rascale, SIAM J. Appl. Math., 62 (2001), 729-745. doi: 10.1137/S0036139900378657. Google Scholar [16] D. Helbing, From microscopic to macroscopic traffic models, in A Perspective Look at Nonlinear Media, Lecture Notes in Phys. , 503, Springer, Berlin, 1998,122–139. doi: 10.1007/BFb0104959. Google Scholar [17] C. Imbert, A non-local regularization of first order Hamilton--Jacobi equations, Journal of Differential Equations, 211 (2005), 218-246. doi: 10.1016/j.jde.2004.06.001. Google Scholar [18] M. Herty and L. Pareschi, Fokker-Planck asymptotics for traffic flow models, Kinet. Relat. Models, 3 (2010), 165-179. doi: 10.3934/krm.2010.3.165. Google Scholar [19] C. Imbert and R. Monneau, Flux-limited solutions for quasi-convex hamilton-jacobi equations on networks, arXiv: 1306.2428.Google Scholar [20] C. Imbert, R. Monneau and E. Rouy, Homogenization of first order equations with (u/$\varepsilon$)-periodic hamiltonians part ⅱ: Application to dislocations dynamics, Communications in Partial Differential Equations, 33 (2008), 479-516. doi: 10.1080/03605300701318922. Google Scholar [21] H. Ishii and S. Koike, Viscosity solutions for monotone systems of second--order elliptic pdes, Communications in Partial Differential Equations, 16 (1991), 1095-1128. doi: 10.1080/03605309108820791. Google Scholar [22] W. Knödel, Graphentheoretische {M}ethoden und Ihre {A}nwendungen Econometrics and Operations Research, ⅩⅢ, Springer-Verlag, Berlin-New York, 1969. doi: 10.1007/978-3-642-95121-3. Google Scholar [23] H. Lee, H. -W. Lee and D. Kim, Macroscopic traffic models from microscopic car-following models Physical Review E 64 (2001), 056126. doi: 10.1103/PhysRevE.64.056126. Google Scholar [24] M. J. Lighthill and G. B. Whitham, On kinematic waves. ⅱ. a theory of traffic flow on long crowded roadss, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 229 (1995), 317-345. doi: 10.1098/rspa.1955.0089. Google Scholar [25] P. L. Lions, Lectures at collège de france, 2013-2014.Google Scholar [26] P. I. Richards, Shock waves on the highway, Operations Research, 4 (1956), 42-51. doi: 10.1287/opre.4.1.42. Google Scholar

show all references

References:
 [1] Y. Achdou and N. Tchou, Hamilton-jacobi equations on networks as limits of singularly perturbed problems in optimal control: Dimension reduction, Communications in Partial Differential Equations, 40 (2015), 652-693. doi: 10.1080/03605302.2014.974764. Google Scholar [2] O. Alvarez and A. Tourin, Viscosity solutions of nonlinear integro-differential equations, Annales de l'Institut Henri Poincaré. Analyse non linéaire, 13 (1996), 293-317. doi: 10.1016/j.anihpc.2007.02.007. Google Scholar [3] A. Aw, A. Klar, M. Rascle and T. Materne, Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM Journal on Applied Mathematics, 63 (2002), 259-278. doi: 10.1137/S0036139900380955. Google Scholar [4] M. Bando, K. Hasebe, A. Nakayama, A. Shibata and Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation Physical Review E 51 (1995), p1035. doi: 10.1103/PhysRevE.51.1035. Google Scholar [5] G. Barles, Solutions de Viscosité des Équations de Hamilton-Jacobi Springer Verlag, 1994. Google Scholar [6] M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bulletin of the American Mathematical Society, 27 (1992), 1-67. doi: 10.1090/S0273-0979-1992-00266-5. Google Scholar [7] F. Da Lio, N. Forcadel and R. Monneau, Convergence of a non-local eikonal equation to anisotropic mean curvature motion. Application to dislocation dynamics, J. Eur. Math. Soc. (JEMS), 10 (2008), 1061-1104. doi: 10.4171/JEMS/140. Google Scholar [8] M. Di Francesco and M. D. Rosini, Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, Arch. Ration. Mech. Anal., 217 (2015), 831-871. doi: 10.1007/s00205-015-0843-4. Google Scholar [9] N. Forcadel, C. Imbert and R. Monneau, Homogenization of fully overdamped frenkel-kontorova models, Journal of Differential Equations, 246 (2009), 1057-1097. doi: 10.1016/j.jde.2008.06.034. Google Scholar [10] N. Forcadel, C. Imbert and R. Monneau, Homogenization of some particle systems with two-body interactions and of the dislocation dynamics, Discrete Contin. Dyn. Syst., 23 (2009), 785-826. doi: 10.3934/dcds.2009.23.785. Google Scholar [11] N. Forcadel, C. Imbert and R. Monneau, Homogenization of accelerated frenkel-kontorova models with n types of particles, Transactions of the American Mathematical Society, 364 (2012), 6187-6227. doi: 10.1090/S0002-9947-2012-05650-9. Google Scholar [12] N. Forcadel and W. Salazar, Homogenization of second order discrete model and application to traffic flow, Differential and Integral Equations, 28 (2015), 1039-1068. Google Scholar [13] N. Forcadel and W. Salazar, A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow, preprint, hal-01097085.Google Scholar [14] G. Galise, C. Imbert and R. Monneau, A junction condition by specified homogenization and application to traffic lights, Anal. PDE, 8 (2015), 1891-1929. doi: 10.2140/apde.2015.8.1891. Google Scholar [15] J. M. Greenberg, Extensions and amplifications of a traffic model of Aw and Rascale, SIAM J. Appl. Math., 62 (2001), 729-745. doi: 10.1137/S0036139900378657. Google Scholar [16] D. Helbing, From microscopic to macroscopic traffic models, in A Perspective Look at Nonlinear Media, Lecture Notes in Phys. , 503, Springer, Berlin, 1998,122–139. doi: 10.1007/BFb0104959. Google Scholar [17] C. Imbert, A non-local regularization of first order Hamilton--Jacobi equations, Journal of Differential Equations, 211 (2005), 218-246. doi: 10.1016/j.jde.2004.06.001. Google Scholar [18] M. Herty and L. Pareschi, Fokker-Planck asymptotics for traffic flow models, Kinet. Relat. Models, 3 (2010), 165-179. doi: 10.3934/krm.2010.3.165. Google Scholar [19] C. Imbert and R. Monneau, Flux-limited solutions for quasi-convex hamilton-jacobi equations on networks, arXiv: 1306.2428.Google Scholar [20] C. Imbert, R. Monneau and E. Rouy, Homogenization of first order equations with (u/$\varepsilon$)-periodic hamiltonians part ⅱ: Application to dislocations dynamics, Communications in Partial Differential Equations, 33 (2008), 479-516. doi: 10.1080/03605300701318922. Google Scholar [21] H. Ishii and S. Koike, Viscosity solutions for monotone systems of second--order elliptic pdes, Communications in Partial Differential Equations, 16 (1991), 1095-1128. doi: 10.1080/03605309108820791. Google Scholar [22] W. Knödel, Graphentheoretische {M}ethoden und Ihre {A}nwendungen Econometrics and Operations Research, ⅩⅢ, Springer-Verlag, Berlin-New York, 1969. doi: 10.1007/978-3-642-95121-3. Google Scholar [23] H. Lee, H. -W. Lee and D. Kim, Macroscopic traffic models from microscopic car-following models Physical Review E 64 (2001), 056126. doi: 10.1103/PhysRevE.64.056126. Google Scholar [24] M. J. Lighthill and G. B. Whitham, On kinematic waves. ⅱ. a theory of traffic flow on long crowded roadss, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 229 (1995), 317-345. doi: 10.1098/rspa.1955.0089. Google Scholar [25] P. L. Lions, Lectures at collège de france, 2013-2014.Google Scholar [26] P. I. Richards, Shock waves on the highway, Operations Research, 4 (1956), 42-51. doi: 10.1287/opre.4.1.42. Google Scholar
 [1] Mihai Bostan, Gawtum Namah. Time periodic viscosity solutions of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2007, 6 (2) : 389-410. doi: 10.3934/cpaa.2007.6.389 [2] Olga Bernardi, Franco Cardin. Minimax and viscosity solutions of Hamilton-Jacobi equations in the convex case. Communications on Pure & Applied Analysis, 2006, 5 (4) : 793-812. doi: 10.3934/cpaa.2006.5.793 [3] Kaizhi Wang, Jun Yan. Lipschitz dependence of viscosity solutions of Hamilton-Jacobi equations with respect to the parameter. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1649-1659. doi: 10.3934/dcds.2016.36.1649 [4] Nestor Guillen, Russell W. Schwab. Neumann homogenization via integro-differential operators. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3677-3703. doi: 10.3934/dcds.2016.36.3677 [5] Isabeau Birindelli, J. Wigniolle. Homogenization of Hamilton-Jacobi equations in the Heisenberg group. Communications on Pure & Applied Analysis, 2003, 2 (4) : 461-479. doi: 10.3934/cpaa.2003.2.461 [6] Kai Zhao, Wei Cheng. On the vanishing contact structure for viscosity solutions of contact type Hamilton-Jacobi equations I: Cauchy problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4345-4358. doi: 10.3934/dcds.2019176 [7] Olivier Bonnefon, Jérôme Coville, Jimmy Garnier, Lionel Roques. Inside dynamics of solutions of integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3057-3085. doi: 10.3934/dcdsb.2014.19.3057 [8] Michael Herty, Reinhard Illner. Analytical and numerical investigations of refined macroscopic traffic flow models. Kinetic & Related Models, 2010, 3 (2) : 311-333. doi: 10.3934/krm.2010.3.311 [9] Gabriella Puppo, Matteo Semplice, Andrea Tosin, Giuseppe Visconti. Kinetic models for traffic flow resulting in a reduced space of microscopic velocities. Kinetic & Related Models, 2017, 10 (3) : 823-854. doi: 10.3934/krm.2017033 [10] Xu Chen, Jianping Wan. Integro-differential equations for foreign currency option prices in exponential Lévy models. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 529-537. doi: 10.3934/dcdsb.2007.8.529 [11] Olga Bernardi, Franco Cardin. On $C^0$-variational solutions for Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 385-406. doi: 10.3934/dcds.2011.31.385 [12] Gawtum Namah, Mohammed Sbihi. A notion of extremal solutions for time periodic Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 647-664. doi: 10.3934/dcdsb.2010.13.647 [13] Gui-Qiang Chen, Bo Su. Discontinuous solutions for Hamilton-Jacobi equations: Uniqueness and regularity. Discrete & Continuous Dynamical Systems - A, 2003, 9 (1) : 167-192. doi: 10.3934/dcds.2003.9.167 [14] David McCaffrey. A representational formula for variational solutions to Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1205-1215. doi: 10.3934/cpaa.2012.11.1205 [15] Eddaly Guerra, Héctor Sánchez-Morgado. Vanishing viscosity limits for space-time periodic Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 331-346. doi: 10.3934/cpaa.2014.13.331 [16] Guillaume Costeseque, Jean-Patrick Lebacque. Discussion about traffic junction modelling: Conservation laws VS Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 411-433. doi: 10.3934/dcdss.2014.7.411 [17] Nalini Anantharaman, Renato Iturriaga, Pablo Padilla, Héctor Sánchez-Morgado. Physical solutions of the Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 513-528. doi: 10.3934/dcdsb.2005.5.513 [18] Claudio Marchi. On the convergence of singular perturbations of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1363-1377. doi: 10.3934/cpaa.2010.9.1363 [19] Yubo Chen, Wan Zhuang. The extreme solutions of PBVP for integro-differential equations with caratheodory functions. Conference Publications, 1998, 1998 (Special) : 160-166. doi: 10.3934/proc.1998.1998.160 [20] Tianling Jin, Jingang Xiong. Schauder estimates for solutions of linear parabolic integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5977-5998. doi: 10.3934/dcds.2015.35.5977

2018 Impact Factor: 1.143