March  2017, 37(3): 1129-1158. doi: 10.3934/dcds.2017047

Necessity for isoperimetric inequality constraints

IIMAS, Universidad Nacional Autóonoma de México, Apartado Postal 20-126, México DF 01000

Received  May 2016 Revised  September 2016 Published  December 2016

Fund Project: The second author was supported by the PASPA-DGAPA program from Universidad Nacional Autónoma de México

In this paper we deal with second order necessary conditions for the problem of Lagrange in the calculus of variations posed over piecewise smooth trajectories and involving inequality and equality isoperimetric constraints. We provide a review of different approaches to derive second order necessary conditions for this problem and prove that, surprisingly, though the solution set to the problem where the conditions hold may vary, all approaches impose the same strong assumption of normality relative to the set defined by equality constraints for active indices. Based on these approaches, we also give some applications to certain optimization problems with mixed constraints.

Citation: Jorge A. Becerril, Javier F. Rosenblueth. Necessity for isoperimetric inequality constraints. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1129-1158. doi: 10.3934/dcds.2017047
References:
[1]

H. Amann, Ordinary Differential Equations. An Introduction to Nonlinear Analysis, Translated from the German by Gerhard Metzen, de Gruyter Studies in Mathematics 13, Berlin, 1990. doi: 10.1515/9783110853698. Google Scholar

[2]

A. V. Arutyunov and F. L. Pereira, Second-order necessary optimality conditions for problems without a priori normality assumptions, Mathematics of Operations Research, 31 (2006), 1-12. doi: 10.1287/moor.1050.0172. Google Scholar

[3]

A. V. Arutyunov and Y. S. Vereshchagina, On necessary second-order conditions in optimal control problems, Differential Equations, 38 (2002), 1531-1540. doi: 10.1023/A:1023624602611. Google Scholar

[4]

K. L. Cortez del Río and J. F. Rosenblueth, Normality and regularity for inequality control constraints, Journal of Convex Analysis, (submitted).Google Scholar

[5]

M. R. de Pinho and J. F. Rosenblueth, Mixed constraints in optimal control: An implicit function theorem approach, IMA Journal of Mathematical Control and Information, 24 (2007), 197-218. doi: 10.1093/imamci/dnl008. Google Scholar

[6]

G. Giorgi, A. Guerraggio and J. Thierfelder, Mathematics of Optimization: Smooth and Nonsmooth Case, Elsevier, Amsterdam, 2004. Google Scholar

[7]

E. G. Gilbert and D. S. Bernstein, Second order necessary conditions in optimal control: Accessory-problem results without normality conditions, Journal of Optimization Theory & Applications, 41 (1983), 75-106. doi: 10.1007/BF00934437. Google Scholar

[8]

M. R. Hestenes, Calculus of Variations and Optimal Control Theory, John Wiley, New York, 1966. Google Scholar

[9]

M. R. Hestenes, Optimization Theory. The Finite Dimensional Case, John Wiley, New York, 1975. Google Scholar

[10]

E. LevitinA. Milyutin and N. P. Osomolovskiǐ, Conditions of high order for a local minimum for problems with constraints, Russian Math. Surveys, 33 (1978), 97-168. doi: 10.1070/RM1978v033n06ABEH003885. Google Scholar

[11]

P. D. Loewen and H. Zheng, Generalized conjugate arcs in optimal control, Proceedings of the 33rd IEEE Conference on Decision and Control, Lake Buena Vista, Florida, 4 (1994), 4004-4008. Google Scholar

[12]

P. D. Loewen and H. Zheng, Generalized conjugate points for optimal control problems, Nonlinear Analysis, Theory, Methods & Applications, 22 (1994), 771-791. doi: 10.1016/0362-546X(94)90226-7. Google Scholar

[13]

H. Maurer and S. Pickenhain, Second order sufficient conditions for control problems with mixed control-state constraints, Journal of Optimization Theory and Applications, 86 (1995), 649-667. doi: 10.1007/BF02192163. Google Scholar

[14]

H. Maurer and H. J. Oberle, Second order sufficient conditions for optimal control problems with free final time: The Riccati approach, SIAM Journal on Control and Optimization, 41 (2002), 380-403. doi: 10.1137/S0363012900377419. Google Scholar

[15]

E. J. McShane, The Lagrange multiplier rule, The American Mathematical Monthl, 80 (1973), 922-925. doi: 10.2307/2319406. Google Scholar

[16]

A. A. Milyutin and N. P. Osmolovskiǐ, Calculus of Variations and Optimal Control, Translations of Mathematical Monographs, 180, American Mathematical Society, Providence, Rhode Island, 1998. Google Scholar

[17]

N. P. Osmolovskiǐ, Second order conditions for a weak local minimum in an optimal control problem (necessity sufficiency), Soviet Math. Dokl., 16 (1975), 1480-1484. Google Scholar

[18]

J. F. Rosenblueth, A new notion of conjugacy for isoperimetric problems, Applied Mathematics and Optimization, 50 (2004), 209-228. doi: 10.1007/s00245-004-0800-3. Google Scholar

[19]

J. F. Rosenblueth, Modified critical directions for inequality control constraints, WSEAS Transactions on Systems and Control, 10 (2015), 215-227. Google Scholar

[20]

J. F. Rosenblueth and Licea G. Sánchez, Cones of critical directions in optimal control, International Journal of Applied Mathematics and Informatics, 7 (2013), 55-67. Google Scholar

[21]

I. B. Russak, Second order necessary conditions for problems with state inequality constraints, SIAM Journal on Control, 13 (1975), 372-388. doi: 10.1137/0313021. Google Scholar

[22]

I. B. Russak, Second order necessary conditions for general problems with state inequality constraints, Journal of Optimization Theory and Applications, 17 (1975), 43-92. doi: 10.1007/BF00933916. Google Scholar

[23]

G. Stefani and P. L. Zezza, Optimality conditions for a constrained control problem, SIAM Journal on Control & Optimization, 34 (1996), 635-659. doi: 10.1137/S0363012994260945. Google Scholar

[24]

F. A. Valentine, The problem of Lagrange with differential inequalities as added side conditions, Contributions to the Calculus of Variations 1933-37, The University of Chicago Press, 1937, 34 (1996), 635-659. doi: 10.1007/978-3-0348-0439-4_16. Google Scholar

[25]

J. Warga, A second-order Lagrangian condition for restricted control problems, Journal of Optimization Theory & Applications, 24 (1996), 475-483. doi: 10.1007/BF00932890. Google Scholar

show all references

References:
[1]

H. Amann, Ordinary Differential Equations. An Introduction to Nonlinear Analysis, Translated from the German by Gerhard Metzen, de Gruyter Studies in Mathematics 13, Berlin, 1990. doi: 10.1515/9783110853698. Google Scholar

[2]

A. V. Arutyunov and F. L. Pereira, Second-order necessary optimality conditions for problems without a priori normality assumptions, Mathematics of Operations Research, 31 (2006), 1-12. doi: 10.1287/moor.1050.0172. Google Scholar

[3]

A. V. Arutyunov and Y. S. Vereshchagina, On necessary second-order conditions in optimal control problems, Differential Equations, 38 (2002), 1531-1540. doi: 10.1023/A:1023624602611. Google Scholar

[4]

K. L. Cortez del Río and J. F. Rosenblueth, Normality and regularity for inequality control constraints, Journal of Convex Analysis, (submitted).Google Scholar

[5]

M. R. de Pinho and J. F. Rosenblueth, Mixed constraints in optimal control: An implicit function theorem approach, IMA Journal of Mathematical Control and Information, 24 (2007), 197-218. doi: 10.1093/imamci/dnl008. Google Scholar

[6]

G. Giorgi, A. Guerraggio and J. Thierfelder, Mathematics of Optimization: Smooth and Nonsmooth Case, Elsevier, Amsterdam, 2004. Google Scholar

[7]

E. G. Gilbert and D. S. Bernstein, Second order necessary conditions in optimal control: Accessory-problem results without normality conditions, Journal of Optimization Theory & Applications, 41 (1983), 75-106. doi: 10.1007/BF00934437. Google Scholar

[8]

M. R. Hestenes, Calculus of Variations and Optimal Control Theory, John Wiley, New York, 1966. Google Scholar

[9]

M. R. Hestenes, Optimization Theory. The Finite Dimensional Case, John Wiley, New York, 1975. Google Scholar

[10]

E. LevitinA. Milyutin and N. P. Osomolovskiǐ, Conditions of high order for a local minimum for problems with constraints, Russian Math. Surveys, 33 (1978), 97-168. doi: 10.1070/RM1978v033n06ABEH003885. Google Scholar

[11]

P. D. Loewen and H. Zheng, Generalized conjugate arcs in optimal control, Proceedings of the 33rd IEEE Conference on Decision and Control, Lake Buena Vista, Florida, 4 (1994), 4004-4008. Google Scholar

[12]

P. D. Loewen and H. Zheng, Generalized conjugate points for optimal control problems, Nonlinear Analysis, Theory, Methods & Applications, 22 (1994), 771-791. doi: 10.1016/0362-546X(94)90226-7. Google Scholar

[13]

H. Maurer and S. Pickenhain, Second order sufficient conditions for control problems with mixed control-state constraints, Journal of Optimization Theory and Applications, 86 (1995), 649-667. doi: 10.1007/BF02192163. Google Scholar

[14]

H. Maurer and H. J. Oberle, Second order sufficient conditions for optimal control problems with free final time: The Riccati approach, SIAM Journal on Control and Optimization, 41 (2002), 380-403. doi: 10.1137/S0363012900377419. Google Scholar

[15]

E. J. McShane, The Lagrange multiplier rule, The American Mathematical Monthl, 80 (1973), 922-925. doi: 10.2307/2319406. Google Scholar

[16]

A. A. Milyutin and N. P. Osmolovskiǐ, Calculus of Variations and Optimal Control, Translations of Mathematical Monographs, 180, American Mathematical Society, Providence, Rhode Island, 1998. Google Scholar

[17]

N. P. Osmolovskiǐ, Second order conditions for a weak local minimum in an optimal control problem (necessity sufficiency), Soviet Math. Dokl., 16 (1975), 1480-1484. Google Scholar

[18]

J. F. Rosenblueth, A new notion of conjugacy for isoperimetric problems, Applied Mathematics and Optimization, 50 (2004), 209-228. doi: 10.1007/s00245-004-0800-3. Google Scholar

[19]

J. F. Rosenblueth, Modified critical directions for inequality control constraints, WSEAS Transactions on Systems and Control, 10 (2015), 215-227. Google Scholar

[20]

J. F. Rosenblueth and Licea G. Sánchez, Cones of critical directions in optimal control, International Journal of Applied Mathematics and Informatics, 7 (2013), 55-67. Google Scholar

[21]

I. B. Russak, Second order necessary conditions for problems with state inequality constraints, SIAM Journal on Control, 13 (1975), 372-388. doi: 10.1137/0313021. Google Scholar

[22]

I. B. Russak, Second order necessary conditions for general problems with state inequality constraints, Journal of Optimization Theory and Applications, 17 (1975), 43-92. doi: 10.1007/BF00933916. Google Scholar

[23]

G. Stefani and P. L. Zezza, Optimality conditions for a constrained control problem, SIAM Journal on Control & Optimization, 34 (1996), 635-659. doi: 10.1137/S0363012994260945. Google Scholar

[24]

F. A. Valentine, The problem of Lagrange with differential inequalities as added side conditions, Contributions to the Calculus of Variations 1933-37, The University of Chicago Press, 1937, 34 (1996), 635-659. doi: 10.1007/978-3-0348-0439-4_16. Google Scholar

[25]

J. Warga, A second-order Lagrangian condition for restricted control problems, Journal of Optimization Theory & Applications, 24 (1996), 475-483. doi: 10.1007/BF00932890. Google Scholar

[1]

Nuno R. O. Bastos, Rui A. C. Ferreira, Delfim F. M. Torres. Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 417-437. doi: 10.3934/dcds.2011.29.417

[2]

M. Soledad Aronna. Second order necessary and sufficient optimality conditions for singular solutions of partially-affine control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1233-1258. doi: 10.3934/dcdss.2018070

[3]

Hongwei Lou, Jiongmin Yong. Second-order necessary conditions for optimal control of semilinear elliptic equations with leading term containing controls. Mathematical Control & Related Fields, 2018, 8 (1) : 57-88. doi: 10.3934/mcrf.2018003

[4]

Hongwei Lou. Second-order necessary/sufficient conditions for optimal control problems in the absence of linear structure. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1445-1464. doi: 10.3934/dcdsb.2010.14.1445

[5]

J.-P. Raymond, F. Tröltzsch. Second order sufficient optimality conditions for nonlinear parabolic control problems with state constraints. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 431-450. doi: 10.3934/dcds.2000.6.431

[6]

Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control & Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022

[7]

Ioan Bucataru, Matias F. Dahl. Semi-basic 1-forms and Helmholtz conditions for the inverse problem of the calculus of variations. Journal of Geometric Mechanics, 2009, 1 (2) : 159-180. doi: 10.3934/jgm.2009.1.159

[8]

Bernard Dacorogna, Giovanni Pisante, Ana Margarida Ribeiro. On non quasiconvex problems of the calculus of variations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 961-983. doi: 10.3934/dcds.2005.13.961

[9]

Daniel Faraco, Jan Kristensen. Compactness versus regularity in the calculus of variations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 473-485. doi: 10.3934/dcdsb.2012.17.473

[10]

B. Bonnard, J.-B. Caillau, E. Trélat. Second order optimality conditions with applications. Conference Publications, 2007, 2007 (Special) : 145-154. doi: 10.3934/proc.2007.2007.145

[11]

RazIye Mert, A. Zafer. A necessary and sufficient condition for oscillation of second order sublinear delay dynamic equations. Conference Publications, 2011, 2011 (Special) : 1061-1067. doi: 10.3934/proc.2011.2011.1061

[12]

Matthias Geissert, Horst Heck, Christof Trunk. $H^{\infty}$-calculus for a system of Laplace operators with mixed order boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1259-1275. doi: 10.3934/dcdss.2013.6.1259

[13]

David Yang Gao. Sufficient conditions and perfect duality in nonconvex minimization with inequality constraints. Journal of Industrial & Management Optimization, 2005, 1 (1) : 53-63. doi: 10.3934/jimo.2005.1.53

[14]

Petr Hasil, Petr Zemánek. Critical second order operators on time scales. Conference Publications, 2011, 2011 (Special) : 653-659. doi: 10.3934/proc.2011.2011.653

[15]

Felix Sadyrbaev. Nonlinear boundary value problems of the calculus of variations. Conference Publications, 2003, 2003 (Special) : 760-770. doi: 10.3934/proc.2003.2003.760

[16]

Antonio Marigonda. Second order conditions for the controllability of nonlinear systems with drift. Communications on Pure & Applied Analysis, 2006, 5 (4) : 861-885. doi: 10.3934/cpaa.2006.5.861

[17]

Yongchao Liu, Hailin Sun, Huifu Xu. An approximation scheme for stochastic programs with second order dominance constraints. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 473-490. doi: 10.3934/naco.2016021

[18]

Xiaoni Chi, Zhongping Wan, Zijun Hao. Second order sufficient conditions for a class of bilevel programs with lower level second-order cone programming problem. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1111-1125. doi: 10.3934/jimo.2015.11.1111

[19]

Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577

[20]

Delfim F. M. Torres. Proper extensions of Noether's symmetry theorem for nonsmooth extremals of the calculus of variations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 491-500. doi: 10.3934/cpaa.2004.3.491

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (17)
  • HTML views (5)
  • Cited by (1)

Other articles
by authors

[Back to Top]