# American Institute of Mathematical Sciences

February  2017, 37(2): 1109-1127. doi: 10.3934/dcds.2017046

## Dynamics of spike in a Keller-Segel's minimal chemotaxis model

 1 School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi 030006, China 2 Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA 3 Department of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China 4 Center for Financial Engineering, Soochow University, Suzhou, Jiangsu 215006, China

* Corresponding author: Yajing Zhang

Received  October 2014 Revised  March 2016 Published  November 2016

Fund Project: This work is partially supported by NSF DMS-1008905, NNSFC (No. 61374089), China Scholarship Council, NSF of Shanxi Province(No. 2014011005-2), Hundred Talent Program of Shanxi and International Cooperation Projects of Shanxi Province (No. 2014081026)

The dynamics are studied for the Keller-Segel's minimal chemotaxis model
 $τ u_t=(u_x-kuv_x)_x, \ \ \ \ v_t=v_{xx}-v+u$
on a bounded interval with homogeneous Neumann boundary conditions, where
 $\tau\geqslant 0$
and
 $k\gg 1$
are parameters and the total mass of
 $u$
is scaled to be one. In general, the dynamics can be divided into three stages: the first stage is very short in which
 $u$
quickly becomes a delta like function with mass concentrated near the point of global maximum of
 $v$
; in the second stage, the point of the global maximum of
 $v$
drifts towards the boundary of the domain and reaches it at the end of the second stage; in the third stage, the profile of the solution evolves to a steady state profile. This paper considers a special case in which the relaxation parameter
 $\tau$
is set to be zero, so the first stage takes no time. A free boundary problem describing the second stage is presented. Rigorous asymptotic behavior is proven for the third stage evolution.
Citation: Yajing Zhang, Xinfu Chen, Jianghao Hao, Xin Lai, Cong Qin. Dynamics of spike in a Keller-Segel's minimal chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 1109-1127. doi: 10.3934/dcds.2017046
##### References:
 [1] N. Alikakos, P. W. Bates and G. Fusco, Slow motion for the Cahn-Hilliard equation in one space dimension, J. Differ. Eqns., 90 (1991), 81-135. doi: 10.1016/0022-0396(91)90163-4. Google Scholar [2] P. W. Bates and J. Xun, Metastable patterns for the Cahn-Hilliard equation, Part Ⅰ, J. Differ. Eqns., 111 (1994), 421-457. doi: 10.1006/jdeq.1994.1089. Google Scholar [3] P. W. Bates and J. Xun, Metastable patterns for the Cahn-Hilliard equation, Part Ⅱ, J. Differ. Eqns., 117 (1995), 165-216. doi: 10.1006/jdeq.1995.1052. Google Scholar [4] P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 715-743. Google Scholar [5] L. Bronsard and D. Hilhorst, On the slow dynamics for the Cahn-Hilliard equation in one space dimension, Proc. Roy. Soc. Lond., 439 (1992), 669-682. doi: 10.1098/rspa.1992.0176. Google Scholar [6] J. Carr and R. Pego, Metastable patterns in solutions of $u_t =\varepsilon ^2 u_{xx}- f(u)$, Comm. Pure Appl. Math., 42 (1989), 523-576. doi: 10.1002/cpa.3160420502. Google Scholar [7] X. Chen, Generation, propagation, and annihilation of metastable patterns, J. Differ. Eqns., 206 (2004), 399-437. doi: 10.1016/j.jde.2004.05.017. Google Scholar [8] X. Chen, J. Hao, X. Wang, Y. Wu and Y. Zhang, Stability of spiky solution of the Keller-Segel's minimal chemotaxis model, J. Differ. Eqns., 257 (2014), 3102-3134. doi: 10.1016/j.jde.2014.06.008. Google Scholar [9] X. Chen and M. Kowalczyk, Dynamics of an interior sipke in the Gierer-Meinhardt system, Siam J. Math. Anal., 33 (2001), 172-193. doi: 10.1137/S0036141099364954. Google Scholar [10] X. Chen and M. Kowalczyk, Slow dynamics of interior spikes in the Shadow Gierer-Meinhardt system, Adv. Differ. Eqns., 6 (2001), 847-872. Google Scholar [11] S. Childress, Chemotactic collapse in two dimensions, in Lecture Notes in Biomath. , 55, Springer, (1984), 61-66.Google Scholar [12] S. Childress and J. Perkus, Nonlinear aspects of chemotaxis, Math. Bios., 56 (1981), 217-237. doi: 10.1016/0025-5564(81)90055-9. Google Scholar [13] P. C. Fife and L. Hsiao, The generation and propagation of internal layers, Nonlinear Anal., 12 (1988), 19-41. doi: 10.1016/0362-546X(88)90010-7. Google Scholar [14] P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to traveling front solutions, Arch. Rational Mech. Anal., 65 (1977), 335-361. doi: 10.1007/BF00250432. Google Scholar [15] G. Fusco, A geometric approach to the dynamics of $u_t =\varepsilon ^2 u_{xx} +f(u)$ for small $\varepsilon$, in Problems Involving Change of Type, Springer, 359 (1990), 53-73.Google Scholar [16] G. Fusco and J. K. Hale, Slow motion manifolds, dormant instability and singular perturbations, J. Dyn. Diff. Eqns., 1 (1989), 75-94. doi: 10.1007/BF01048791. Google Scholar [17] H. Gajewski, K. Zacharias and Dr. Konrad Gröger, Global behavior of a reaction-diffusion system modelling chemotaxis, Math. Nachr., 195 (1998), 77-114. doi: 10.1002/mana.19981950106. Google Scholar [18] M. Herrero and J. Velázquez, Singularity patterns in a chemotaxis model, Math. Ann., 306 (1996), 583-623. doi: 10.1007/BF01445268. Google Scholar [19] M. Herrero and J. Velázquez, Chemotaxis collapse for the Keller-Segel model, J. Math. Biol., 35 (1996), 177-194. doi: 10.1007/s002850050049. Google Scholar [20] T. Hillen and K. J. Painter, Global existence far a parabolic chemotaxis model with prevention of overcrowding, Adv. Appl. Math., 26 (2001), 280-301. doi: 10.1006/aama.2001.0721. Google Scholar [21] T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3. Google Scholar [22] T. Hillen and A. Potapov, The one-dimensional chemotaxis model: Global existence and asymptotic profile, Math. Meth. Appl. Sci., 27 (2004), 1783-1801. doi: 10.1002/mma.569. Google Scholar [23] D. Horstmann, From 1970 until now: The Keller-Segal model in chemotaxis and its consequences, Ⅰ, Jahresber. DMV, 105 (2003), 103-165. Google Scholar [24] D. Horstmann, From 1970 until now: The Keller-Segal model in chemotaxis and its consequences, Ⅱ, Jahresber. DMV, 106 (2004), 51-69. Google Scholar [25] W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modellingchemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824. doi: 10.2307/2153966. Google Scholar [26] K. Kang, T. Kolokolnikov and M. J. Ward, The stability and dynamics of a spike in the one-dimensional Keller-Segel model, IMA J. Appl. Math., 72 (2007), 140-162. doi: 10.1093/imamat/hxl028. Google Scholar [27] E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5. Google Scholar [28] C.-S. Lin, W.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differ. Eqns., 72 (1988), 1-27. doi: 10.1016/0022-0396(88)90147-7. Google Scholar [29] T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., 5 (1995), 581-601. Google Scholar [30] T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433. Google Scholar [31] T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in twodimensional domains, J. Inequal. Appl., 6 (2001), 37-55. doi: 10.1155/S1025583401000042. Google Scholar [32] W.-M. Ni and I. Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J., 70 (1993), 247-281. doi: 10.1215/S0012-7094-93-07004-4. Google Scholar [33] K. Osaki and A. Yagi, Finite dimensional attractors for one dimensional Keller-Segel equations, Funkcial Ekvac., 44 (2001), 441-469. Google Scholar [34] C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys., 15 (1953), 311-338. doi: 10.1007/BF02476407. Google Scholar [35] T. Senba and T. Suzuki, Parabolic system of chemotaxis: Blowup in a finite and the infinite time, Methods Appl. Anal., 8 (2001), 349-367. doi: 10.4310/MAA.2001.v8.n2.a9. Google Scholar [36] X. Sun and M. J. Ward, Dynamics and coarsening of interfaces for the viscous Cahn-Hilliard equation in one spatial dimension, Stud. Appl. Math., 105 (2000), 203-234. doi: 10.1111/1467-9590.00149. Google Scholar [37] X. Wang and Q. Xu, Spiky and transition layer steady states of chemotaxis systems via global bifurcation and Helly compactness theorem, J. Math. Biol., 66 (2013), 1241-1266. doi: 10.1007/s00285-012-0533-x. Google Scholar [38] Y. Zhang, X. Chen, J. Hao, X. Lai and C. Qin, An eigenvalue problem arising from spiky steady states of a minimal chemotaxis model, J. Math. Anal. Appl., 420 (2014), 684-704. doi: 10.1016/j.jmaa.2014.06.005. Google Scholar

show all references

##### References:
 [1] N. Alikakos, P. W. Bates and G. Fusco, Slow motion for the Cahn-Hilliard equation in one space dimension, J. Differ. Eqns., 90 (1991), 81-135. doi: 10.1016/0022-0396(91)90163-4. Google Scholar [2] P. W. Bates and J. Xun, Metastable patterns for the Cahn-Hilliard equation, Part Ⅰ, J. Differ. Eqns., 111 (1994), 421-457. doi: 10.1006/jdeq.1994.1089. Google Scholar [3] P. W. Bates and J. Xun, Metastable patterns for the Cahn-Hilliard equation, Part Ⅱ, J. Differ. Eqns., 117 (1995), 165-216. doi: 10.1006/jdeq.1995.1052. Google Scholar [4] P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 715-743. Google Scholar [5] L. Bronsard and D. Hilhorst, On the slow dynamics for the Cahn-Hilliard equation in one space dimension, Proc. Roy. Soc. Lond., 439 (1992), 669-682. doi: 10.1098/rspa.1992.0176. Google Scholar [6] J. Carr and R. Pego, Metastable patterns in solutions of $u_t =\varepsilon ^2 u_{xx}- f(u)$, Comm. Pure Appl. Math., 42 (1989), 523-576. doi: 10.1002/cpa.3160420502. Google Scholar [7] X. Chen, Generation, propagation, and annihilation of metastable patterns, J. Differ. Eqns., 206 (2004), 399-437. doi: 10.1016/j.jde.2004.05.017. Google Scholar [8] X. Chen, J. Hao, X. Wang, Y. Wu and Y. Zhang, Stability of spiky solution of the Keller-Segel's minimal chemotaxis model, J. Differ. Eqns., 257 (2014), 3102-3134. doi: 10.1016/j.jde.2014.06.008. Google Scholar [9] X. Chen and M. Kowalczyk, Dynamics of an interior sipke in the Gierer-Meinhardt system, Siam J. Math. Anal., 33 (2001), 172-193. doi: 10.1137/S0036141099364954. Google Scholar [10] X. Chen and M. Kowalczyk, Slow dynamics of interior spikes in the Shadow Gierer-Meinhardt system, Adv. Differ. Eqns., 6 (2001), 847-872. Google Scholar [11] S. Childress, Chemotactic collapse in two dimensions, in Lecture Notes in Biomath. , 55, Springer, (1984), 61-66.Google Scholar [12] S. Childress and J. Perkus, Nonlinear aspects of chemotaxis, Math. Bios., 56 (1981), 217-237. doi: 10.1016/0025-5564(81)90055-9. Google Scholar [13] P. C. Fife and L. Hsiao, The generation and propagation of internal layers, Nonlinear Anal., 12 (1988), 19-41. doi: 10.1016/0362-546X(88)90010-7. Google Scholar [14] P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to traveling front solutions, Arch. Rational Mech. Anal., 65 (1977), 335-361. doi: 10.1007/BF00250432. Google Scholar [15] G. Fusco, A geometric approach to the dynamics of $u_t =\varepsilon ^2 u_{xx} +f(u)$ for small $\varepsilon$, in Problems Involving Change of Type, Springer, 359 (1990), 53-73.Google Scholar [16] G. Fusco and J. K. Hale, Slow motion manifolds, dormant instability and singular perturbations, J. Dyn. Diff. Eqns., 1 (1989), 75-94. doi: 10.1007/BF01048791. Google Scholar [17] H. Gajewski, K. Zacharias and Dr. Konrad Gröger, Global behavior of a reaction-diffusion system modelling chemotaxis, Math. Nachr., 195 (1998), 77-114. doi: 10.1002/mana.19981950106. Google Scholar [18] M. Herrero and J. Velázquez, Singularity patterns in a chemotaxis model, Math. Ann., 306 (1996), 583-623. doi: 10.1007/BF01445268. Google Scholar [19] M. Herrero and J. Velázquez, Chemotaxis collapse for the Keller-Segel model, J. Math. Biol., 35 (1996), 177-194. doi: 10.1007/s002850050049. Google Scholar [20] T. Hillen and K. J. Painter, Global existence far a parabolic chemotaxis model with prevention of overcrowding, Adv. Appl. Math., 26 (2001), 280-301. doi: 10.1006/aama.2001.0721. Google Scholar [21] T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3. Google Scholar [22] T. Hillen and A. Potapov, The one-dimensional chemotaxis model: Global existence and asymptotic profile, Math. Meth. Appl. Sci., 27 (2004), 1783-1801. doi: 10.1002/mma.569. Google Scholar [23] D. Horstmann, From 1970 until now: The Keller-Segal model in chemotaxis and its consequences, Ⅰ, Jahresber. DMV, 105 (2003), 103-165. Google Scholar [24] D. Horstmann, From 1970 until now: The Keller-Segal model in chemotaxis and its consequences, Ⅱ, Jahresber. DMV, 106 (2004), 51-69. Google Scholar [25] W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modellingchemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824. doi: 10.2307/2153966. Google Scholar [26] K. Kang, T. Kolokolnikov and M. J. Ward, The stability and dynamics of a spike in the one-dimensional Keller-Segel model, IMA J. Appl. Math., 72 (2007), 140-162. doi: 10.1093/imamat/hxl028. Google Scholar [27] E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5. Google Scholar [28] C.-S. Lin, W.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differ. Eqns., 72 (1988), 1-27. doi: 10.1016/0022-0396(88)90147-7. Google Scholar [29] T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., 5 (1995), 581-601. Google Scholar [30] T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433. Google Scholar [31] T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in twodimensional domains, J. Inequal. Appl., 6 (2001), 37-55. doi: 10.1155/S1025583401000042. Google Scholar [32] W.-M. Ni and I. Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J., 70 (1993), 247-281. doi: 10.1215/S0012-7094-93-07004-4. Google Scholar [33] K. Osaki and A. Yagi, Finite dimensional attractors for one dimensional Keller-Segel equations, Funkcial Ekvac., 44 (2001), 441-469. Google Scholar [34] C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys., 15 (1953), 311-338. doi: 10.1007/BF02476407. Google Scholar [35] T. Senba and T. Suzuki, Parabolic system of chemotaxis: Blowup in a finite and the infinite time, Methods Appl. Anal., 8 (2001), 349-367. doi: 10.4310/MAA.2001.v8.n2.a9. Google Scholar [36] X. Sun and M. J. Ward, Dynamics and coarsening of interfaces for the viscous Cahn-Hilliard equation in one spatial dimension, Stud. Appl. Math., 105 (2000), 203-234. doi: 10.1111/1467-9590.00149. Google Scholar [37] X. Wang and Q. Xu, Spiky and transition layer steady states of chemotaxis systems via global bifurcation and Helly compactness theorem, J. Math. Biol., 66 (2013), 1241-1266. doi: 10.1007/s00285-012-0533-x. Google Scholar [38] Y. Zhang, X. Chen, J. Hao, X. Lai and C. Qin, An eigenvalue problem arising from spiky steady states of a minimal chemotaxis model, J. Math. Anal. Appl., 420 (2014), 684-704. doi: 10.1016/j.jmaa.2014.06.005. Google Scholar
A numerical solution of (1) with $\tau=0$, $k=200$, $\ell=1$, and mesh sizes $\Delta x=1/400$, $\Delta t=3\times 10^{-6}$. Left: snapshots of $v(k,\cdot,t)$ with constant frequency; middle: snapshots of $u$; right: location of the point of maximum of $v(k,\cdot,t)$, which reaches the boundary at $T\approx 0.13$.
First Row: a numerical solution of (6) with $k=100$, $\ell=4$, and $v_0(x)=\frac{\ell}{\pi}\big|\cos\frac{\pi(x-2.5)}{\ell}\big|$; left is location of maximum of $v$; middle is snapshots of $v(k,\cdot,t)$ with non-uniform time elapses; right is snapshots of $v_x(k,\cdot,t)$. Second Row: the solution of the free boundary problem (7) for $t\in[0,T^-]$ ($T\approx 5.2$), combined with the solution of the boundary value problem (8) for $t\geqslant T$; left is the location of free boundary; middle is snapshots of $w$; right is snapshots of $w_x$.
 [1] Yuanyuan Liu, Youshan Tao. Asymptotic behavior in a chemotaxis-growth system with nonlinear production of signals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 465-475. doi: 10.3934/dcdsb.2017021 [2] Chiu-Ya Lan, Chi-Kun Lin. Asymptotic behavior of the compressible viscous potential fluid: Renormalization group approach. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 161-188. doi: 10.3934/dcds.2004.11.161 [3] Marco Di Francesco, Alexander Lorz, Peter A. Markowich. Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1437-1453. doi: 10.3934/dcds.2010.28.1437 [4] Cecilia Cavaterra, Maurizio Grasselli. Asymptotic behavior of population dynamics models with nonlocal distributed delays. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 861-883. doi: 10.3934/dcds.2008.22.861 [5] Xiaoyan Lin, Yubo He, Xianhua Tang. Existence and asymptotic behavior of ground state solutions for asymptotically linear Schrödinger equation with inverse square potential. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1547-1565. doi: 10.3934/cpaa.2019074 [6] Kazuhiro Kurata, Kotaro Morimoto. Existence of multiple spike stationary patterns in a chemotaxis model with weak saturation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 139-164. doi: 10.3934/dcds.2011.31.139 [7] Tahir Bachar Issa, Rachidi Bolaji Salako. Asymptotic dynamics in a two-species chemotaxis model with non-local terms. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3839-3874. doi: 10.3934/dcdsb.2017193 [8] Domenica Borra, Tommaso Lorenzi. Asymptotic analysis of continuous opinion dynamics models under bounded confidence. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1487-1499. doi: 10.3934/cpaa.2013.12.1487 [9] Fengqi Yi, Hua Zhang, Alhaji Cherif, Wenying Zhang. Spatiotemporal patterns of a homogeneous diffusive system modeling hair growth: Global asymptotic behavior and multiple bifurcation analysis. Communications on Pure & Applied Analysis, 2014, 13 (1) : 347-369. doi: 10.3934/cpaa.2014.13.347 [10] Zhipeng Qiu, Jun Yu, Yun Zou. The asymptotic behavior of a chemostat model. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 721-727. doi: 10.3934/dcdsb.2004.4.721 [11] Shin-Ichiro Ei, Kota Ikeda, Yasuhito Miyamoto. Dynamics of a boundary spike for the shadow Gierer-Meinhardt system. Communications on Pure & Applied Analysis, 2012, 11 (1) : 115-145. doi: 10.3934/cpaa.2012.11.115 [12] Aldana M. González Montoro, Ricardo Cao, Christel Faes, Geert Molenberghs, Nelson Espinosa, Javier Cudeiro, Jorge Mariño. Cross nearest-spike interval based method to measure synchrony dynamics. Mathematical Biosciences & Engineering, 2014, 11 (1) : 27-48. doi: 10.3934/mbe.2014.11.27 [13] Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1 [14] Martha Garlick, James Powell, David Eyre, Thomas Robbins. Mathematically modeling PCR: An asymptotic approximation with potential for optimization. Mathematical Biosciences & Engineering, 2010, 7 (2) : 363-384. doi: 10.3934/mbe.2010.7.363 [15] Mykhailo Potomkin. Asymptotic behavior of thermoviscoelastic Berger plate. Communications on Pure & Applied Analysis, 2010, 9 (1) : 161-192. doi: 10.3934/cpaa.2010.9.161 [16] Hunseok Kang. Asymptotic behavior of a discrete turing model. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 265-284. doi: 10.3934/dcds.2010.27.265 [17] Shubo Zhao, Ping Liu, Mingchao Jiang. Stability and bifurcation analysis in a chemotaxis bistable growth system. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1165-1174. doi: 10.3934/dcdss.2017063 [18] Tomomi Yokota, Noriaki Yoshino. Existence of solutions to chemotaxis dynamics with logistic source. Conference Publications, 2015, 2015 (special) : 1125-1133. doi: 10.3934/proc.2015.1125 [19] Doan Duy Hai, Atsushi Yagi. Longtime behavior of solutions to chemotaxis-proliferation model with three variables. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3957-3974. doi: 10.3934/dcds.2012.32.3957 [20] Moncef Aouadi, Taoufik Moulahi. Asymptotic analysis of a nonsimple thermoelastic rod. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1475-1492. doi: 10.3934/dcdss.2016059

2018 Impact Factor: 1.143