February  2017, 37(2): 725-742. doi: 10.3934/dcds.2017030

On the asymptotic behavior of symmetric solutions of the Allen-Cahn equation in unbounded domains in $\mathbb{R}^2$

University of L'Aquila, DISIM, via Vetoio, Coppito, 67010 L'Aquila, Italy

* Corresponding author: Giorgio Fusco

Received  June 2015 Revised  November 2015 Published  November 2016

We consider a Dirichlet problem for the Allen-Cahn equation in a smooth, bounded or unbounded, domain $Ω\subset\mathbb{R}^n.$ Under suitable assumptions, we prove an existence result and a uniform exponential estimate for symmetric solutions. In dimension $n=2$ an additional asymptotic result is obtained. These results are based on a pointwise estimate obtained for local minimizers of the Allen-Cahn energy.

Citation: Giorgio Fusco, Francesco Leonetti, Cristina Pignotti. On the asymptotic behavior of symmetric solutions of the Allen-Cahn equation in unbounded domains in $\mathbb{R}^2$. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 725-742. doi: 10.3934/dcds.2017030
References:
[1]

N. D. Alikakos and G. Fusco, Asymptotic and rigidity results for symmetric solutions of the elliptic system $Δ u=W_u(u)$, Ann Sc. Norm. Sup. Pisa, 15 (2016), 809-836. Google Scholar

[2]

H. DangP. C. Fife and L. A. Peletier, Saddle solutions of bistable diffusion equation, Z. Angew. Math. Phys., 43 (1992), 984-998. doi: 10.1007/BF00916424. Google Scholar

[3]

M. Efendiev and F. Hamel, Asymptotic behavior of solutions of semilinear elliptic equations in unbounded domains: Two approaches, Adv. Math., 228 (2011), 1237-1261. doi: 10.1016/j.aim.2011.06.013. Google Scholar

[4]

G. Fusco, Equivariant entire solutions to the elliptic system $Δ u=W_u(u)$ for general $G-$invariant potentials, Calc. Var. Part. Diff. Eqs., 49 (2014), 963-985. doi: 10.1007/s00526-013-0607-7. Google Scholar

[5]

G. Fusco, On some elementary properties of vector minimizers of the Allen-Cahn energy, Comm. Pure Appl. Anal., 13 (2014), 1045-1060. doi: 10.3934/cpaa.2014.13.1045. Google Scholar

[6]

G. FuscoF. Leonetti and C. Pignotti, A uniform estimate for positive solutions of semilinear elliptic equations, Transactions AMS, 363 (2011), 4285-4307. doi: 10.1090/S0002-9947-2011-05356-0. Google Scholar

[7] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin, 1981.
[8]

P. Smyrnelis, personal comunication. Google Scholar

show all references

References:
[1]

N. D. Alikakos and G. Fusco, Asymptotic and rigidity results for symmetric solutions of the elliptic system $Δ u=W_u(u)$, Ann Sc. Norm. Sup. Pisa, 15 (2016), 809-836. Google Scholar

[2]

H. DangP. C. Fife and L. A. Peletier, Saddle solutions of bistable diffusion equation, Z. Angew. Math. Phys., 43 (1992), 984-998. doi: 10.1007/BF00916424. Google Scholar

[3]

M. Efendiev and F. Hamel, Asymptotic behavior of solutions of semilinear elliptic equations in unbounded domains: Two approaches, Adv. Math., 228 (2011), 1237-1261. doi: 10.1016/j.aim.2011.06.013. Google Scholar

[4]

G. Fusco, Equivariant entire solutions to the elliptic system $Δ u=W_u(u)$ for general $G-$invariant potentials, Calc. Var. Part. Diff. Eqs., 49 (2014), 963-985. doi: 10.1007/s00526-013-0607-7. Google Scholar

[5]

G. Fusco, On some elementary properties of vector minimizers of the Allen-Cahn energy, Comm. Pure Appl. Anal., 13 (2014), 1045-1060. doi: 10.3934/cpaa.2014.13.1045. Google Scholar

[6]

G. FuscoF. Leonetti and C. Pignotti, A uniform estimate for positive solutions of semilinear elliptic equations, Transactions AMS, 363 (2011), 4285-4307. doi: 10.1090/S0002-9947-2011-05356-0. Google Scholar

[7] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin, 1981.
[8]

P. Smyrnelis, personal comunication. Google Scholar

[1]

Christos Sourdis. On the growth of the energy of entire solutions to the vector Allen-Cahn equation. Communications on Pure & Applied Analysis, 2015, 14 (2) : 577-584. doi: 10.3934/cpaa.2015.14.577

[2]

Paul H. Rabinowitz, Ed Stredulinsky. On a class of infinite transition solutions for an Allen-Cahn model equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 319-332. doi: 10.3934/dcds.2008.21.319

[3]

Eleonora Cinti. Saddle-shaped solutions for the fractional Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 441-463. doi: 10.3934/dcdss.2018024

[4]

Gianni Gilardi. On an Allen-Cahn type integrodifferential equation. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 703-709. doi: 10.3934/dcdss.2013.6.703

[5]

Haydi Israel. Well-posedness and long time behavior of an Allen-Cahn type equation. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2811-2827. doi: 10.3934/cpaa.2013.12.2811

[6]

Matthieu Alfaro, Hiroshi Matano. On the validity of formal asymptotic expansions in Allen-Cahn equation and FitzHugh-Nagumo system with generic initial data. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1639-1649. doi: 10.3934/dcdsb.2012.17.1639

[7]

Luyi Ma, Hong-Tao Niu, Zhi-Cheng Wang. Global asymptotic stability of traveling waves to the Allen-Cahn equation with a fractional Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2457-2472. doi: 10.3934/cpaa.2019111

[8]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[9]

Giorgio Fusco. Layered solutions to the vector Allen-Cahn equation in $\mathbb{R}^2$. Minimizers and heteroclinic connections. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1807-1841. doi: 10.3934/cpaa.2017088

[10]

Michał Kowalczyk, Yong Liu, Frank Pacard. Towards classification of multiple-end solutions to the Allen-Cahn equation in $\mathbb{R}^2$. Networks & Heterogeneous Media, 2012, 7 (4) : 837-855. doi: 10.3934/nhm.2012.7.837

[11]

Hongmei Cheng, Rong Yuan. Multidimensional stability of disturbed pyramidal traveling fronts in the Allen-Cahn equation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1015-1029. doi: 10.3934/dcdsb.2015.20.1015

[12]

Xinlong Feng, Huailing Song, Tao Tang, Jiang Yang. Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation. Inverse Problems & Imaging, 2013, 7 (3) : 679-695. doi: 10.3934/ipi.2013.7.679

[13]

Ciprian G. Gal, Maurizio Grasselli. The non-isothermal Allen-Cahn equation with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 1009-1040. doi: 10.3934/dcds.2008.22.1009

[14]

Zhuoran Du, Baishun Lai. Transition layers for an inhomogeneous Allen-Cahn equation in Riemannian manifolds. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1407-1429. doi: 10.3934/dcds.2013.33.1407

[15]

Charles-Edouard Bréhier, Ludovic Goudenège. Analysis of some splitting schemes for the stochastic Allen-Cahn equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4169-4190. doi: 10.3934/dcdsb.2019077

[16]

Yan Hu. Layer solutions for an Allen-Cahn type system driven by the fractional Laplacian. Communications on Pure & Applied Analysis, 2016, 15 (3) : 947-964. doi: 10.3934/cpaa.2016.15.947

[17]

Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations & Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012

[18]

Cristina Pocci. On singular limit of a nonlinear $p$-order equation related to Cahn-Hilliard and Allen-Cahn evolutions. Evolution Equations & Control Theory, 2013, 2 (3) : 517-530. doi: 10.3934/eect.2013.2.517

[19]

Ahmad Makki, Alain Miranville. Existence of solutions for anisotropic Cahn-Hilliard and Allen-Cahn systems in higher space dimensions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 759-775. doi: 10.3934/dcdss.2016027

[20]

Fang Li, Kimie Nakashima. Transition layers for a spatially inhomogeneous Allen-Cahn equation in multi-dimensional domains. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1391-1420. doi: 10.3934/dcds.2012.32.1391

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (3)
  • Cited by (0)

[Back to Top]