January  2017, 37(1): 169-188. doi: 10.3934/dcds.2017007

Carleman estimates and Unique Continuation Property for 1-D viscous Camassa-Holm equation

School of Mathematics and Statistics, and Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun 130024, China

* Corresponding author: Peng Gao

Received  March 2016 Revised  September 2016 Published  November 2016

This paper is devoted to studying the 1-D viscous Camassa-Holm equation on a bounded interval. We first deduce the existence and uniqueness of strong solution to the viscous Camassa-Holm equation by using Galerkin method. Then we establish an identity for a second order parabolic operator, by applying this identity we obtain two global Carleman estimates for the linear viscous Camassa-Holm operator. Based on these estimates, we obtain two types of Unique Continuation Property for the viscous Camassa-Holm equation.

Citation: Peng Gao. Carleman estimates and Unique Continuation Property for 1-D viscous Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 169-188. doi: 10.3934/dcds.2017007
References:
[1]

L. Baudouin and J. P. Puel, Uniqueness and stability in an inverse problem for the Schrödinger equation, Inverse Problems, 18 (2002), 1537-1554. doi: 10.1088/0266-5611/18/6/307.

[2]

M. Bellassoued, Logarithmic stability in the dynamical inverse problem for the Schrödinger equation by arbitrary boundary observation, Journal de mathematiques pures et appliquees, 91 (2009), 233-255. doi: 10.1016/j.matpur.2008.06.002.

[3]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664. doi: 10.1103/PhysRevLett.71.1661.

[4]

T. Carleman, Sur un probléme d'unicité pour les systémes d'équations aux derivées partielles á deux variables independentes, Ark. Mat. Astr.Fys., 2B (1939), 1-9.

[5]

E. CerpaA. Mercado and A. F. Pazoto, On the boundary control of a parabolic system coupling KS-KdV and Heat equations, Sci. Ser. A Math. Sci., 22 (2012), 55-74.

[6]

M. Chen and P. Gao, A New Unique Continuation Property for the Korteweg de-Vries Equation, Bull. Aust. Math. Soc., 90 (2014), 90-98. doi: 10.1017/S000497271300110X.

[7]

P. N. da Silva, Unique Continuation for the Kawahara Equation, TEMA Tend. Mat. Apl. Comput., 8 (2007), 463-473. doi: 10.5540/tema.2007.08.03.0463.

[8]

M. EllerI. Lasiecka and R. Triggiani, Unique continuation for over-determined Kirchoff plate equations and related thermoelastic systems, J. Inverse Ill-Posed Probl., 9 (2001), 103-148. doi: 10.1515/jiip.2001.9.2.103.

[9]

L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, 1998.

[10]

C. FoiasD. D. Holm and E. S. Titi, The Navier-Stokes-alpha model of fluid turbulence in: Advances in Nonlinear Mathematics and Science, Phys. D, 152/153 (2001), 505-519. doi: 10.1016/S0167-2789(01)00191-9.

[11]

Y. Fu and B. Guo, Time periodic solution of the viscous Camassa-Holm equation, J. Math. Anal. Appl., 313 (2006), 311-321. doi: 10.1016/j.jmaa.2005.08.073.

[12]

P. Gao, Carleman estimate and unique continuation property for the linear stochastic Korteweg-de Vries equation, Bull. Austral. Math. Soc., 90 (2014), 283-294. doi: 10.1017/S0004972714000276.

[13]

P. Gao, Insensitizing controls for the Cahn-Hilliard type equation, Electron. J. Qual. Theory Differ. Equ., 35 (2014), 1-22.

[14]

P. Gao, A new global Carleman estimate for the one-dimensional Kuramoto-Sivashinsky equation and applications to exact controllability to the trajectories and an inverse problem, Nonlinear Analysis: Theory, Methods & Applications, 117 (2015), 133-147. doi: 10.1016/j.na.2015.01.015.

[15]

P. GaoM. Chen and Y. Li, Observability estimates and null controllability for forward and backward linear stochastic Kuramoto-Sivashinsky equations, SIAM J. Control Optim., 53 (2015), 475-500. doi: 10.1137/130943820.

[16]

P. Gao, A new global Carleman estimate for Cahn-Hilliard type equation and its applications, J. Differential Equations, 260 (2016), 427-444. doi: 10.1016/j.jde.2015.08.053.

[17]

P. Gao, Local exact controllability to the trajectories of the Swift-Hohenberg equation, Nonlinear Analysis: Theory, Methods & Applications, 139 (2016), 169-195. doi: 10.1016/j.na.2016.02.023.

[18]

P. Gao, Global Carleman estimates for linear stochastic Kawahara equation and their applications, Mathematics of Control, Signals, and Systems, 28 (2016), 1-22. doi: 10.1007/s00498-016-0173-6.

[19]

O. Glass, Controllability and asymptotic stabilization of the Camassa-Holm equation, Journal of Differential Equations, 245 (2008), 1584-1615. doi: 10.1016/j.jde.2008.06.016.

[20]

O. Glass and S. Guerrero, Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit, Asymptot. Anal., 60 (2008), 61-100.

[21]

O. Glass and S. Guerrero, On the controllability of the fifth-order Korteweg-de Vries equation, Annales de l'Institut Henri Poincaré (C) Non Linear Analysis, 26 (2009), 2181-2209. doi: 10.1016/j.anihpc.2009.01.010.

[22]

D. D. HolmJ. E. Marsden and T. S. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. Math., 137 (1998), 1-81. doi: 10.1006/aima.1998.1721.

[23]

D. D. Holm and E. S. Titi, Computational models of turbulence: The lans-$α$ model and the role of global analysis, SIAM News, 38 (2005), 1-5.

[24]

J. U. Kim, On the Stochastic Wave Equation with Nonlinear Damping, Appl. Math. Optim., 58 (2008), 29-67. doi: 10.1007/s00245-007-9029-2.

[25]

K. H. KwekH. GaoW. Zhang and C. Qu, An initial boundary value problem of Camassa-Holm equation, J. Math. Phys., 41 (2000), 8279-8285. doi: 10.1063/1.1288498.

[26]

N. A. Larkin, Modified KdV equation with a source term in a bounded domain, Math. Meth. Appl. Sci., 29 (2006), 751-765. doi: 10.1002/mma.704.

[27]

I. LasieckaR. Triggiani and P. F. Yao, Carleman estimates for a plate equation on a Riemann manifold with energy level terms, Analysis and Applications, 10 (2003), 199-236. doi: 10.1007/978-1-4757-3741-7_15.

[28]

W. K. Lim, Global well-posedness for the viscous Camassa-Holm equation, J. Math. Anal. Appl., 326 (2007), 432-442. doi: 10.1016/j.jmaa.2006.01.095.

[29]

J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Springer-Verlag, NewYork-Heidelberg, 1972.

[30]

S. Liu and R. Triggiani, Global uniqueness in determining electric potentials for a system of strongly coupled Schrödinger equations with magnetic potential terms, J. Inverse Ill-Posed Probl., 19 (2011), 223-254. doi: 10.1515/JIIP.2011.030.

[31]

J. E. Marsden and S. Shkoller, Global well-posedness for the Lagrangian averaged Navier-Stokes (LANS-$ α$) equations on bounded domains, Topological Methods in the Physical Sciences, London, 2000, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 359 (2001), 1449-1468. doi: 10.1098/rsta.2001.0852.

[32]

A. MercadoA. Osses and L. Rosier, Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights, Inverse Problems, 24 (2008), 015017, 18pp. doi: 10.1088/0266-5611/24/1/015017.

[33]

M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations, 2nd edn, Texts in Applied Mathematics, Vol. 13, Springer-Verlag, New York, 2004.

[34]

L. Rosier and B.-Y. Zhang, Global stabilization of the generalized Korteweg-de Vries equation posed on a finite domain, SIAM Journal on Control and Optimization, 45 (2006), 927-956. doi: 10.1137/050631409.

[35]

L. Rosier and B.-Y. Zhang, Unique continuation property and control for the Benjamin-Bona-Mahony equation on a periodic domain, Journal of Differential Equations, 254 (2013), 141-178. doi: 10.1016/j.jde.2012.08.014.

[36]

J. Simon, Compact sets in the space $ L^{p}(0,T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96. doi: 10.1007/BF01762360.

[37]

L. TianC. Shen and D. Ding, Optimal control of the viscous Camassa-Holm equation, Nonlinear Analysis: Real World Applications, 10 (2009), 519-530. doi: 10.1016/j.nonrwa.2007.10.016.

[38]

R. Triggiani and P. F. Yao, Inverse/observability estimates for Schrödinger equations with variable coefficients, Control and Cybernetics, 28 (1999), 627-664.

[39]

M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Problems, 25 (2009), 123013, 75pp. doi: 10.1088/0266-5611/25/12/123013.

[40]

G. Yuan and M. Yamamoto, Lipschitz stability in inverse problems for a Kirchhoff plate equation, Asymptotic Analysis, 53 (2007), 29-60.

[41]

X. Zhang, Exact controllability of semilinear plate equations, Asymptotic Analysis, 27 (2001), 95-125.

[42]

X. Zhang and E. Zuazua, A sharp observability inequality for Kirchhoff plate systems with potentials, Comput. Appl. Math., 25 (2006), 353-373. doi: 10.1590/S0101-82052006000200013.

[43]

Z. C. Zhou, Observability estimate and null controllability for one-dimensional fourth order parabolic equation, Taiwanese J. Math., 16 (2012), 1991-2017.

show all references

References:
[1]

L. Baudouin and J. P. Puel, Uniqueness and stability in an inverse problem for the Schrödinger equation, Inverse Problems, 18 (2002), 1537-1554. doi: 10.1088/0266-5611/18/6/307.

[2]

M. Bellassoued, Logarithmic stability in the dynamical inverse problem for the Schrödinger equation by arbitrary boundary observation, Journal de mathematiques pures et appliquees, 91 (2009), 233-255. doi: 10.1016/j.matpur.2008.06.002.

[3]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664. doi: 10.1103/PhysRevLett.71.1661.

[4]

T. Carleman, Sur un probléme d'unicité pour les systémes d'équations aux derivées partielles á deux variables independentes, Ark. Mat. Astr.Fys., 2B (1939), 1-9.

[5]

E. CerpaA. Mercado and A. F. Pazoto, On the boundary control of a parabolic system coupling KS-KdV and Heat equations, Sci. Ser. A Math. Sci., 22 (2012), 55-74.

[6]

M. Chen and P. Gao, A New Unique Continuation Property for the Korteweg de-Vries Equation, Bull. Aust. Math. Soc., 90 (2014), 90-98. doi: 10.1017/S000497271300110X.

[7]

P. N. da Silva, Unique Continuation for the Kawahara Equation, TEMA Tend. Mat. Apl. Comput., 8 (2007), 463-473. doi: 10.5540/tema.2007.08.03.0463.

[8]

M. EllerI. Lasiecka and R. Triggiani, Unique continuation for over-determined Kirchoff plate equations and related thermoelastic systems, J. Inverse Ill-Posed Probl., 9 (2001), 103-148. doi: 10.1515/jiip.2001.9.2.103.

[9]

L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, 1998.

[10]

C. FoiasD. D. Holm and E. S. Titi, The Navier-Stokes-alpha model of fluid turbulence in: Advances in Nonlinear Mathematics and Science, Phys. D, 152/153 (2001), 505-519. doi: 10.1016/S0167-2789(01)00191-9.

[11]

Y. Fu and B. Guo, Time periodic solution of the viscous Camassa-Holm equation, J. Math. Anal. Appl., 313 (2006), 311-321. doi: 10.1016/j.jmaa.2005.08.073.

[12]

P. Gao, Carleman estimate and unique continuation property for the linear stochastic Korteweg-de Vries equation, Bull. Austral. Math. Soc., 90 (2014), 283-294. doi: 10.1017/S0004972714000276.

[13]

P. Gao, Insensitizing controls for the Cahn-Hilliard type equation, Electron. J. Qual. Theory Differ. Equ., 35 (2014), 1-22.

[14]

P. Gao, A new global Carleman estimate for the one-dimensional Kuramoto-Sivashinsky equation and applications to exact controllability to the trajectories and an inverse problem, Nonlinear Analysis: Theory, Methods & Applications, 117 (2015), 133-147. doi: 10.1016/j.na.2015.01.015.

[15]

P. GaoM. Chen and Y. Li, Observability estimates and null controllability for forward and backward linear stochastic Kuramoto-Sivashinsky equations, SIAM J. Control Optim., 53 (2015), 475-500. doi: 10.1137/130943820.

[16]

P. Gao, A new global Carleman estimate for Cahn-Hilliard type equation and its applications, J. Differential Equations, 260 (2016), 427-444. doi: 10.1016/j.jde.2015.08.053.

[17]

P. Gao, Local exact controllability to the trajectories of the Swift-Hohenberg equation, Nonlinear Analysis: Theory, Methods & Applications, 139 (2016), 169-195. doi: 10.1016/j.na.2016.02.023.

[18]

P. Gao, Global Carleman estimates for linear stochastic Kawahara equation and their applications, Mathematics of Control, Signals, and Systems, 28 (2016), 1-22. doi: 10.1007/s00498-016-0173-6.

[19]

O. Glass, Controllability and asymptotic stabilization of the Camassa-Holm equation, Journal of Differential Equations, 245 (2008), 1584-1615. doi: 10.1016/j.jde.2008.06.016.

[20]

O. Glass and S. Guerrero, Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit, Asymptot. Anal., 60 (2008), 61-100.

[21]

O. Glass and S. Guerrero, On the controllability of the fifth-order Korteweg-de Vries equation, Annales de l'Institut Henri Poincaré (C) Non Linear Analysis, 26 (2009), 2181-2209. doi: 10.1016/j.anihpc.2009.01.010.

[22]

D. D. HolmJ. E. Marsden and T. S. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. Math., 137 (1998), 1-81. doi: 10.1006/aima.1998.1721.

[23]

D. D. Holm and E. S. Titi, Computational models of turbulence: The lans-$α$ model and the role of global analysis, SIAM News, 38 (2005), 1-5.

[24]

J. U. Kim, On the Stochastic Wave Equation with Nonlinear Damping, Appl. Math. Optim., 58 (2008), 29-67. doi: 10.1007/s00245-007-9029-2.

[25]

K. H. KwekH. GaoW. Zhang and C. Qu, An initial boundary value problem of Camassa-Holm equation, J. Math. Phys., 41 (2000), 8279-8285. doi: 10.1063/1.1288498.

[26]

N. A. Larkin, Modified KdV equation with a source term in a bounded domain, Math. Meth. Appl. Sci., 29 (2006), 751-765. doi: 10.1002/mma.704.

[27]

I. LasieckaR. Triggiani and P. F. Yao, Carleman estimates for a plate equation on a Riemann manifold with energy level terms, Analysis and Applications, 10 (2003), 199-236. doi: 10.1007/978-1-4757-3741-7_15.

[28]

W. K. Lim, Global well-posedness for the viscous Camassa-Holm equation, J. Math. Anal. Appl., 326 (2007), 432-442. doi: 10.1016/j.jmaa.2006.01.095.

[29]

J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Springer-Verlag, NewYork-Heidelberg, 1972.

[30]

S. Liu and R. Triggiani, Global uniqueness in determining electric potentials for a system of strongly coupled Schrödinger equations with magnetic potential terms, J. Inverse Ill-Posed Probl., 19 (2011), 223-254. doi: 10.1515/JIIP.2011.030.

[31]

J. E. Marsden and S. Shkoller, Global well-posedness for the Lagrangian averaged Navier-Stokes (LANS-$ α$) equations on bounded domains, Topological Methods in the Physical Sciences, London, 2000, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 359 (2001), 1449-1468. doi: 10.1098/rsta.2001.0852.

[32]

A. MercadoA. Osses and L. Rosier, Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights, Inverse Problems, 24 (2008), 015017, 18pp. doi: 10.1088/0266-5611/24/1/015017.

[33]

M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations, 2nd edn, Texts in Applied Mathematics, Vol. 13, Springer-Verlag, New York, 2004.

[34]

L. Rosier and B.-Y. Zhang, Global stabilization of the generalized Korteweg-de Vries equation posed on a finite domain, SIAM Journal on Control and Optimization, 45 (2006), 927-956. doi: 10.1137/050631409.

[35]

L. Rosier and B.-Y. Zhang, Unique continuation property and control for the Benjamin-Bona-Mahony equation on a periodic domain, Journal of Differential Equations, 254 (2013), 141-178. doi: 10.1016/j.jde.2012.08.014.

[36]

J. Simon, Compact sets in the space $ L^{p}(0,T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96. doi: 10.1007/BF01762360.

[37]

L. TianC. Shen and D. Ding, Optimal control of the viscous Camassa-Holm equation, Nonlinear Analysis: Real World Applications, 10 (2009), 519-530. doi: 10.1016/j.nonrwa.2007.10.016.

[38]

R. Triggiani and P. F. Yao, Inverse/observability estimates for Schrödinger equations with variable coefficients, Control and Cybernetics, 28 (1999), 627-664.

[39]

M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Problems, 25 (2009), 123013, 75pp. doi: 10.1088/0266-5611/25/12/123013.

[40]

G. Yuan and M. Yamamoto, Lipschitz stability in inverse problems for a Kirchhoff plate equation, Asymptotic Analysis, 53 (2007), 29-60.

[41]

X. Zhang, Exact controllability of semilinear plate equations, Asymptotic Analysis, 27 (2001), 95-125.

[42]

X. Zhang and E. Zuazua, A sharp observability inequality for Kirchhoff plate systems with potentials, Comput. Appl. Math., 25 (2006), 353-373. doi: 10.1590/S0101-82052006000200013.

[43]

Z. C. Zhou, Observability estimate and null controllability for one-dimensional fourth order parabolic equation, Taiwanese J. Math., 16 (2012), 1991-2017.

[1]

Milena Stanislavova, Atanas Stefanov. Attractors for the viscous Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 159-186. doi: 10.3934/dcds.2007.18.159

[2]

Zhenhua Guo, Mina Jiang, Zhian Wang, Gao-Feng Zheng. Global weak solutions to the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 883-906. doi: 10.3934/dcds.2008.21.883

[3]

Qiaoyi Hu, Zhijun Qiao. Persistence properties and unique continuation for a dispersionless two-component Camassa-Holm system with peakon and weak kink solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2613-2625. doi: 10.3934/dcds.2016.36.2613

[4]

Shaojie Yang, Tianzhou Xu. Symmetry analysis, persistence properties and unique continuation for the cross-coupled Camassa-Holm system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 329-341. doi: 10.3934/dcds.2018016

[5]

Shouming Zhou, Chunlai Mu. Global conservative and dissipative solutions of the generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1713-1739. doi: 10.3934/dcds.2013.33.1713

[6]

Shihui Zhu. Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5201-5221. doi: 10.3934/dcds.2016026

[7]

Laurent Bourgeois. Quantification of the unique continuation property for the heat equation. Mathematical Control & Related Fields, 2017, 7 (3) : 347-367. doi: 10.3934/mcrf.2017012

[8]

Yongsheng Mi, Boling Guo, Chunlai Mu. On an $N$-Component Camassa-Holm equation with peakons. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1575-1601. doi: 10.3934/dcds.2017065

[9]

Helge Holden, Xavier Raynaud. Dissipative solutions for the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1047-1112. doi: 10.3934/dcds.2009.24.1047

[10]

Defu Chen, Yongsheng Li, Wei Yan. On the Cauchy problem for a generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 871-889. doi: 10.3934/dcds.2015.35.871

[11]

Yu Gao, Jian-Guo Liu. The modified Camassa-Holm equation in Lagrangian coordinates. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2545-2592. doi: 10.3934/dcdsb.2018067

[12]

Giuseppe Maria Coclite, Lorenzo Di Ruvo. A note on the convergence of the solution of the high order Camassa-Holm equation to the entropy ones of a scalar conservation law. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1247-1282. doi: 10.3934/dcds.2017052

[13]

Peng Gao. Global Carleman estimate for the Kawahara equation and its applications. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1853-1874. doi: 10.3934/cpaa.2018088

[14]

Stephen C. Anco, Elena Recio, María L. Gandarias, María S. Bruzón. A nonlinear generalization of the Camassa-Holm equation with peakon solutions. Conference Publications, 2015, 2015 (special) : 29-37. doi: 10.3934/proc.2015.0029

[15]

Li Yang, Zeng Rong, Shouming Zhou, Chunlai Mu. Uniqueness of conservative solutions to the generalized Camassa-Holm equation via characteristics. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5205-5220. doi: 10.3934/dcds.2018230

[16]

Yongsheng Mi, Chunlai Mu. On a three-Component Camassa-Holm equation with peakons. Kinetic & Related Models, 2014, 7 (2) : 305-339. doi: 10.3934/krm.2014.7.305

[17]

Feng Wang, Fengquan Li, Zhijun Qiao. On the Cauchy problem for a higher-order μ-Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4163-4187. doi: 10.3934/dcds.2018181

[18]

Danping Ding, Lixin Tian, Gang Xu. The study on solutions to Camassa-Holm equation with weak dissipation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 483-492. doi: 10.3934/cpaa.2006.5.483

[19]

Priscila Leal da Silva, Igor Leite Freire. An equation unifying both Camassa-Holm and Novikov equations. Conference Publications, 2015, 2015 (special) : 304-311. doi: 10.3934/proc.2015.0304

[20]

Stephen Anco, Daniel Kraus. Hamiltonian structure of peakons as weak solutions for the modified Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4449-4465. doi: 10.3934/dcds.2018194

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (9)
  • HTML views (5)
  • Cited by (1)

Other articles
by authors

[Back to Top]