December  2016, 36(12): 7207-7234. doi: 10.3934/dcds.2016114

A powered Gronwall-type inequality and applications to stochastic differential equations

1. 

Institute of Mathematics and Software Science, Sichuan Normal University, Chengdu, Sichuan 610066, China

2. 

Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China

Received  February 2016 Revised  May 2016 Published  October 2016

In this paper we study a powered integral inequality involving a finite sum, which can be used to solve the inequalities with singular kernels. We present that the solution of the inequality is decided by a finite recursion, whose result is proved to be a continuous, bounded or asymptotic function. Meanwhile, in order to overcome an obstacle from powers of integrals, we modify the method of monotonization into the powered monotonization. Furthermore, relying on the result and our technique of concavification, we discuss a generalized stochastic integral inequality, and give an estimate of the mean square. In the end, as applications, we study uniform boundedness and continuous dependence of solutions for a class of stochastic differential equation in mean square.
Citation: Jun Zhou, Jun Shen, Weinian Zhang. A powered Gronwall-type inequality and applications to stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7207-7234. doi: 10.3934/dcds.2016114
References:
[1]

R. P. Agarwal, S. Deng and W. Zhang, Generalization of a retarded Gronwall-like inequality and its applications,, Appl. Math. Comput., 165 (2005), 599. doi: 10.1016/j.amc.2004.04.067. Google Scholar

[2]

K. Amano, A stochastic Gronwall inequality and its applications,, J. Ineq. Pure Appl. Math., 6 (2005). Google Scholar

[3]

R. Bellman, The stability of solutions of linear differential equations,, Duke Math. J., 10 (1943), 643. doi: 10.1215/S0012-7094-43-01059-2. Google Scholar

[4]

I. A. Bihari, A generalization of a lemma of Bellman and its application to uniqueness problem of differential equation,, Acta Math. Acad. Sci. Hung., 7 (1956), 81. doi: 10.1007/BF02022967. Google Scholar

[5]

W. Cheung, Q. Ma and S. Tseng, Some new nonlinear weakly singular integral inequalities of Wendroff type with applications,, J. Inequal. Appl., 2008 (2008). doi: 10.1155/2008/909156. Google Scholar

[6]

S. Deng and C. Prather, Generalization of an impulsive nonlinear singular Gronwall-Bihari inequality with delay,, J. Ineq. Pure Appl. Math., 9 (2008). Google Scholar

[7]

A. Friedman, Stochastic Differential Equations and Applications,, Academic Press, (2006). Google Scholar

[8]

T. H. Gronwall, Note on the derivatives with respect to a parameter of the solutions of a system of differential equations,, Ann. Math., 20 (1919), 292. doi: 10.2307/1967124. Google Scholar

[9]

G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities,, Cambridge University Press, (1988). doi: 10.1007/BF01218837. Google Scholar

[10]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Lecture Notes in Math., 840 (1981). Google Scholar

[11]

K. Itô, On a stochastic integral equation,, Proc. Japan Acad., 22 (1946), 32. doi: 10.3792/pja/1195572371. Google Scholar

[12]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations,, Math. Stud., 204 (2006). Google Scholar

[13]

O. Lipovan, A retarded Gronwall-like inequality and its applications,, J. Math. Anal. Appl., 252 (2000), 389. doi: 10.1006/jmaa.2000.7085. Google Scholar

[14]

Q. Ma and E. Yang, Estimates on solutions of some weakly singular Volterra integral inequalities,, Acta Math. Appl. Sinca, 25 (2002), 505. Google Scholar

[15]

M. Medved, A new approach to an analysis of Henry type integral inequalities and their Bihari type versions,, J. Math. Anal. Appl., 214 (1997), 349. doi: 10.1006/jmaa.1997.5532. Google Scholar

[16]

G. Mittag-Leffler, Sur la nouvelle fonction $E_\alpha(x)$,, C. R. Acad. Sci. Paris, 137 (1903), 554. Google Scholar

[17]

B. Øksendal, Stochastic Differential Equations: An Introduction with Applications,, $6^{th}$ edition, (2003). doi: 10.1007/978-3-642-14394-6. Google Scholar

[18]

B. G. Pachpatte, Inequalities for Differential and Integral Equations,, Math. in Sci. and Eng., 197 (1998). Google Scholar

[19]

M. Pinto, Integral inequalities of Bihari-type and applications,, Funkcial. Ekvac., 33 (1990), 387. Google Scholar

[20]

E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals,, Princeton Math. Ser., 43 (1993). Google Scholar

[21]

N.-E. Tatar, An impulsive nonlinear singular version of the Gronwall-Bihari inequality,, J. Inequal. Appl., 2006 (2006). doi: 10.1155/JIA/2006/84561. Google Scholar

[22]

W. Wang, A generalized retarded Gronwall-like inequality in two variables and applications to BVP,, Appl. Math. Comput., 191 (2007), 144. doi: 10.1016/j.amc.2007.02.099. Google Scholar

[23]

M. Wu and N. Huang, Stochastic integral inequalities with applications,, Math. Inequal. Appl., 13 (2010), 667. doi: 10.7153/mia-13-48. Google Scholar

[24]

T. Yamada and S. Watanabe, On the uniqueness of solutions of stochastic differential equations,, J. Math. Kyoto Univ., 11 (1971), 155. Google Scholar

[25]

T. Yamada and S. Watanabe, On the uniqueness of solutions of stochastic differential equations II,, J. Math. Kyoto Univ., 11 (1971), 533. Google Scholar

[26]

Y. Yan, Nonlinear Gronwall-Bellman type integral inequalities with Maxima,, Math. Inequal. Appl., 16 (2013), 911. doi: 10.7153/mia-16-71. Google Scholar

[27]

H. Ye, J. Gao and Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation,, J. Math. Anal. Appl., 328 (2007), 1075. doi: 10.1016/j.jmaa.2006.05.061. Google Scholar

[28]

W. Zhang, PM functions, their characteristic intervals and iterative roots,, Ann. Polon. Math., 65 (1997), 119. Google Scholar

show all references

References:
[1]

R. P. Agarwal, S. Deng and W. Zhang, Generalization of a retarded Gronwall-like inequality and its applications,, Appl. Math. Comput., 165 (2005), 599. doi: 10.1016/j.amc.2004.04.067. Google Scholar

[2]

K. Amano, A stochastic Gronwall inequality and its applications,, J. Ineq. Pure Appl. Math., 6 (2005). Google Scholar

[3]

R. Bellman, The stability of solutions of linear differential equations,, Duke Math. J., 10 (1943), 643. doi: 10.1215/S0012-7094-43-01059-2. Google Scholar

[4]

I. A. Bihari, A generalization of a lemma of Bellman and its application to uniqueness problem of differential equation,, Acta Math. Acad. Sci. Hung., 7 (1956), 81. doi: 10.1007/BF02022967. Google Scholar

[5]

W. Cheung, Q. Ma and S. Tseng, Some new nonlinear weakly singular integral inequalities of Wendroff type with applications,, J. Inequal. Appl., 2008 (2008). doi: 10.1155/2008/909156. Google Scholar

[6]

S. Deng and C. Prather, Generalization of an impulsive nonlinear singular Gronwall-Bihari inequality with delay,, J. Ineq. Pure Appl. Math., 9 (2008). Google Scholar

[7]

A. Friedman, Stochastic Differential Equations and Applications,, Academic Press, (2006). Google Scholar

[8]

T. H. Gronwall, Note on the derivatives with respect to a parameter of the solutions of a system of differential equations,, Ann. Math., 20 (1919), 292. doi: 10.2307/1967124. Google Scholar

[9]

G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities,, Cambridge University Press, (1988). doi: 10.1007/BF01218837. Google Scholar

[10]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Lecture Notes in Math., 840 (1981). Google Scholar

[11]

K. Itô, On a stochastic integral equation,, Proc. Japan Acad., 22 (1946), 32. doi: 10.3792/pja/1195572371. Google Scholar

[12]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations,, Math. Stud., 204 (2006). Google Scholar

[13]

O. Lipovan, A retarded Gronwall-like inequality and its applications,, J. Math. Anal. Appl., 252 (2000), 389. doi: 10.1006/jmaa.2000.7085. Google Scholar

[14]

Q. Ma and E. Yang, Estimates on solutions of some weakly singular Volterra integral inequalities,, Acta Math. Appl. Sinca, 25 (2002), 505. Google Scholar

[15]

M. Medved, A new approach to an analysis of Henry type integral inequalities and their Bihari type versions,, J. Math. Anal. Appl., 214 (1997), 349. doi: 10.1006/jmaa.1997.5532. Google Scholar

[16]

G. Mittag-Leffler, Sur la nouvelle fonction $E_\alpha(x)$,, C. R. Acad. Sci. Paris, 137 (1903), 554. Google Scholar

[17]

B. Øksendal, Stochastic Differential Equations: An Introduction with Applications,, $6^{th}$ edition, (2003). doi: 10.1007/978-3-642-14394-6. Google Scholar

[18]

B. G. Pachpatte, Inequalities for Differential and Integral Equations,, Math. in Sci. and Eng., 197 (1998). Google Scholar

[19]

M. Pinto, Integral inequalities of Bihari-type and applications,, Funkcial. Ekvac., 33 (1990), 387. Google Scholar

[20]

E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals,, Princeton Math. Ser., 43 (1993). Google Scholar

[21]

N.-E. Tatar, An impulsive nonlinear singular version of the Gronwall-Bihari inequality,, J. Inequal. Appl., 2006 (2006). doi: 10.1155/JIA/2006/84561. Google Scholar

[22]

W. Wang, A generalized retarded Gronwall-like inequality in two variables and applications to BVP,, Appl. Math. Comput., 191 (2007), 144. doi: 10.1016/j.amc.2007.02.099. Google Scholar

[23]

M. Wu and N. Huang, Stochastic integral inequalities with applications,, Math. Inequal. Appl., 13 (2010), 667. doi: 10.7153/mia-13-48. Google Scholar

[24]

T. Yamada and S. Watanabe, On the uniqueness of solutions of stochastic differential equations,, J. Math. Kyoto Univ., 11 (1971), 155. Google Scholar

[25]

T. Yamada and S. Watanabe, On the uniqueness of solutions of stochastic differential equations II,, J. Math. Kyoto Univ., 11 (1971), 533. Google Scholar

[26]

Y. Yan, Nonlinear Gronwall-Bellman type integral inequalities with Maxima,, Math. Inequal. Appl., 16 (2013), 911. doi: 10.7153/mia-16-71. Google Scholar

[27]

H. Ye, J. Gao and Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation,, J. Math. Anal. Appl., 328 (2007), 1075. doi: 10.1016/j.jmaa.2006.05.061. Google Scholar

[28]

W. Zhang, PM functions, their characteristic intervals and iterative roots,, Ann. Polon. Math., 65 (1997), 119. Google Scholar

[1]

Giuseppe Da Prato. An integral inequality for the invariant measure of some finite dimensional stochastic differential equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3015-3027. doi: 10.3934/dcdsb.2016085

[2]

Patricia J.Y. Wong. Existence of solutions to singular integral equations. Conference Publications, 2009, 2009 (Special) : 818-827. doi: 10.3934/proc.2009.2009.818

[3]

Xiaohui Yu. Liouville type theorems for singular integral equations and integral systems. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1825-1840. doi: 10.3934/cpaa.2016017

[4]

Mario Ahues, Filomena D. d'Almeida, Alain Largillier, Paulo B. Vasconcelos. Defect correction for spectral computations for a singular integral operator. Communications on Pure & Applied Analysis, 2006, 5 (2) : 241-250. doi: 10.3934/cpaa.2006.5.241

[5]

Xumin Wang. Singular Hardy-Trudinger-Moser inequality and the existence of extremals on the unit disc. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2717-2733. doi: 10.3934/cpaa.2019121

[6]

Hui-Qiang Ma, Nan-Jing Huang. Neural network smoothing approximation method for stochastic variational inequality problems. Journal of Industrial & Management Optimization, 2015, 11 (2) : 645-660. doi: 10.3934/jimo.2015.11.645

[7]

Yufeng Shi, Tianxiao Wang, Jiongmin Yong. Mean-field backward stochastic Volterra integral equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1929-1967. doi: 10.3934/dcdsb.2013.18.1929

[8]

Tianxiao Wang, Yufeng Shi. Symmetrical solutions of backward stochastic Volterra integral equations and their applications. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 251-274. doi: 10.3934/dcdsb.2010.14.251

[9]

Yufeng Shi, Tianxiao Wang, Jiongmin Yong. Optimal control problems of forward-backward stochastic Volterra integral equations. Mathematical Control & Related Fields, 2015, 5 (3) : 613-649. doi: 10.3934/mcrf.2015.5.613

[10]

Jorge A. Becerril, Javier F. Rosenblueth. Necessity for isoperimetric inequality constraints. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1129-1158. doi: 10.3934/dcds.2017047

[11]

Gisella Croce, Bernard Dacorogna. On a generalized Wirtinger inequality. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1329-1341. doi: 10.3934/dcds.2003.9.1329

[12]

Suxiang He, Pan Zhang, Xiao Hu, Rong Hu. A sample average approximation method based on a D-gap function for stochastic variational inequality problems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 977-987. doi: 10.3934/jimo.2014.10.977

[13]

Liping Pang, Fanyun Meng, Jinhe Wang. Asymptotic convergence of stationary points of stochastic multiobjective programs with parametric variational inequality constraint via SAA approach. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1653-1675. doi: 10.3934/jimo.2018116

[14]

A. Pedas, G. Vainikko. Smoothing transformation and piecewise polynomial projection methods for weakly singular Fredholm integral equations. Communications on Pure & Applied Analysis, 2006, 5 (2) : 395-413. doi: 10.3934/cpaa.2006.5.395

[15]

Radjesvarane Alexandre, Lingbing He. Integral estimates for a linear singular operator linked with Boltzmann operators part II: High singularities $1\le\nu<2$. Kinetic & Related Models, 2008, 1 (4) : 491-513. doi: 10.3934/krm.2008.1.491

[16]

G. C. Yang, K. Q. Lan. Systems of singular integral equations and applications to existence of reversed flow solutions of Falkner-Skan equations. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2465-2495. doi: 10.3934/cpaa.2013.12.2465

[17]

T. Diogo, N. B. Franco, P. Lima. High order product integration methods for a Volterra integral equation with logarithmic singular kernel. Communications on Pure & Applied Analysis, 2004, 3 (2) : 217-235. doi: 10.3934/cpaa.2004.3.217

[18]

Zainidin Eshkuvatov. Homotopy perturbation method and Chebyshev polynomials for solving a class of singular and hypersingular integral equations. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 337-350. doi: 10.3934/naco.2018022

[19]

Yin Yang, Yunqing Huang. Spectral Jacobi-Galerkin methods and iterated methods for Fredholm integral equations of the second kind with weakly singular kernel. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 685-702. doi: 10.3934/dcdss.2019043

[20]

Yutian Lei. On the integral systems with negative exponents. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1039-1057. doi: 10.3934/dcds.2015.35.1039

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]