• Previous Article
    Analyticity, Gevrey regularity and unique continuation for an integrable multi-component peakon system with an arbitrary polynomial function
  • DCDS Home
  • This Issue
  • Next Article
    Geometric Lorenz flows with historic behavior
December  2016, 36(12): 7001-7020. doi: 10.3934/dcds.2016104

The finite dimensional global attractor for the 3D viscous Primitive Equations

1. 

Department of Mathematics, Oklahoma State University, 401 Mathematical Sciences, Stillwater, OK 74078

Received  January 2016 Revised  April 2016 Published  October 2016

A new method is presented to prove finiteness of the fractal and Hausdorff dimensions of the global attractor for the strong solutions to the 3D Primitive Equations (PEs) with viscosity, which is applicable to more general situations than the recent result of [8] in the sense that it removes all extra technical conditions imposed by previous analyses. More specifically, the dimensions of the global attractor are proved finite for heat source $Q\in L^2$, exactly the same condition for well-posedness of global strong solutions and existence of the global attractor of these solutions; while the best previous result obtained recently in [8] still requires the extra condition that $∂_zQ\in L^2$ for finiteness of the dimensions of the global attractor. The key new idea is that Ladyzhenskaya's squeezing property of the semigroup for the strong solutions can be established without higher solution regularity of Primitive Equations. This has the general interest for dissipative evolution equations. For this reason, the new method especially has the advantange of dealing with more complicated boundary conditions which present essential difficulties for previous methods. In particular, the case of 3D viscous PEs with `` physical boundary conditions'' can be treated by the new method in the same way as presented in this article, however, it seems rather difficult for previous methods.
Citation: Ning Ju. The finite dimensional global attractor for the 3D viscous Primitive Equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7001-7020. doi: 10.3934/dcds.2016104
References:
[1]

C. Cao and E. S. Titi, Global well-posedness and finite dimensional global attractor for a 3-D planetary geostrophic viscous model,, Comm. Pure Appl. Math., 56 (2003), 198. doi: 10.1002/cpa.10056. Google Scholar

[2]

C. Cao and E. S. Titi, Global well-posedness of the three-dimensional primitive equations of large scale ocean and atmosphere dynamics,, Ann. of Math.(2), 166 (2007), 245. doi: 10.4007/annals.2007.166.245. Google Scholar

[3]

I. Chueshov, A squeezing property and its applications to a description of long time behaviour in the 3D viscous primitive equations,, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 711. doi: 10.1017/S0308210512001953. Google Scholar

[4]

P. Constantin, C. Foias and R. Temam, Attractors representing turbulent flows,, Memoirs of A.M.S., 53 (1985). doi: 10.1090/memo/0314. Google Scholar

[5]

L. Evans and R. Gastler, Some results for the primitive equations with physical boundary conditions,, Z. Angew. Math. Phys., 64 (2013), 1729. doi: 10.1007/s00033-013-0320-6. Google Scholar

[6]

F. Guillén-Gonzáez, N. Masmoudi and M. A. Rodríguez-Bellido, Anisotropic estimates and strong solutions of the primitive equations,, Diff. Integral Eq., 14 (2001), 1381. Google Scholar

[7]

N. Ju, The global attractor for the solutions to the 3D viscous primitive equations,, Discrete and Continuous Dynamical Systems, 17 (2007), 159. doi: 10.3934/dcds.2007.17.159. Google Scholar

[8]

N. Ju and R. Temam, Finite dimensions of the global attractor for 3D primitive equations with viscosity,, J. Nonlinear Sci., 25 (2015), 131. doi: 10.1007/s00332-014-9223-8. Google Scholar

[9]

G. Kobelkov, Existence of a solution 'in the large' for the 3D large-scale ocean dynamics equations,, C. R. Math. Acad. Sc. Paris, 343 (2006), 283. doi: 10.1016/j.crma.2006.04.020. Google Scholar

[10]

G. Kobelkov, Existence of a solution 'in the large' for ocean dynamics equations,, J. Math. Fluid Mech., 9 (2007), 588. doi: 10.1007/s00021-006-0228-4. Google Scholar

[11]

I. Kukavica and M. Ziane, On the regularity of the primitive equations of the ocean,, Nonlinearity, 20 (2007), 2739. doi: 10.1088/0951-7715/20/12/001. Google Scholar

[12]

I. Kukavica and M. Ziane, Uniform gradient bounds for the primitive equations of the ocean,, Differential Integral Equations, 21 (2008), 837. Google Scholar

[13]

O. Ladyzhenskaya, Some comments to my papers on the theory of attractors for abstract semigroups,, Zap. Nauchn. Sem. LOMI, 182 (1990), 102. doi: 10.1007/BF01671002. Google Scholar

[14]

J. L. Lions, R. Temam and S. Wang, New formulations of the primitive equations of atmosphere and applications,, Nonlinearity, 5 (1992), 237. doi: 10.1088/0951-7715/5/2/001. Google Scholar

[15]

J. Lions, R. Temam and S. Wang, On the equations of the large scale Ocean,, Nonlinearity, 5 (1992), 1007. doi: 10.1088/0951-7715/5/5/002. Google Scholar

[16]

M. Petcu, On the three dimensional primitive equations,, Adv. Dif. Eq., 11 (2006), 1201. Google Scholar

[17]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics,, Applied Mathematical Sciences, (1988). doi: 10.1007/978-1-4684-0313-8. Google Scholar

[18]

R. Temam, Navier-Stokes equations. Theory and numerical analysis,, reprint of 3rd edition, (2001). doi: 10.1090/chel/343. Google Scholar

[19]

R. Temam and M. Ziane, Some mathematical problems in geophysical fluid dynamics,, Handbook of Mathematical Fluid Dynamics, 3 (2004), 535. Google Scholar

show all references

References:
[1]

C. Cao and E. S. Titi, Global well-posedness and finite dimensional global attractor for a 3-D planetary geostrophic viscous model,, Comm. Pure Appl. Math., 56 (2003), 198. doi: 10.1002/cpa.10056. Google Scholar

[2]

C. Cao and E. S. Titi, Global well-posedness of the three-dimensional primitive equations of large scale ocean and atmosphere dynamics,, Ann. of Math.(2), 166 (2007), 245. doi: 10.4007/annals.2007.166.245. Google Scholar

[3]

I. Chueshov, A squeezing property and its applications to a description of long time behaviour in the 3D viscous primitive equations,, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 711. doi: 10.1017/S0308210512001953. Google Scholar

[4]

P. Constantin, C. Foias and R. Temam, Attractors representing turbulent flows,, Memoirs of A.M.S., 53 (1985). doi: 10.1090/memo/0314. Google Scholar

[5]

L. Evans and R. Gastler, Some results for the primitive equations with physical boundary conditions,, Z. Angew. Math. Phys., 64 (2013), 1729. doi: 10.1007/s00033-013-0320-6. Google Scholar

[6]

F. Guillén-Gonzáez, N. Masmoudi and M. A. Rodríguez-Bellido, Anisotropic estimates and strong solutions of the primitive equations,, Diff. Integral Eq., 14 (2001), 1381. Google Scholar

[7]

N. Ju, The global attractor for the solutions to the 3D viscous primitive equations,, Discrete and Continuous Dynamical Systems, 17 (2007), 159. doi: 10.3934/dcds.2007.17.159. Google Scholar

[8]

N. Ju and R. Temam, Finite dimensions of the global attractor for 3D primitive equations with viscosity,, J. Nonlinear Sci., 25 (2015), 131. doi: 10.1007/s00332-014-9223-8. Google Scholar

[9]

G. Kobelkov, Existence of a solution 'in the large' for the 3D large-scale ocean dynamics equations,, C. R. Math. Acad. Sc. Paris, 343 (2006), 283. doi: 10.1016/j.crma.2006.04.020. Google Scholar

[10]

G. Kobelkov, Existence of a solution 'in the large' for ocean dynamics equations,, J. Math. Fluid Mech., 9 (2007), 588. doi: 10.1007/s00021-006-0228-4. Google Scholar

[11]

I. Kukavica and M. Ziane, On the regularity of the primitive equations of the ocean,, Nonlinearity, 20 (2007), 2739. doi: 10.1088/0951-7715/20/12/001. Google Scholar

[12]

I. Kukavica and M. Ziane, Uniform gradient bounds for the primitive equations of the ocean,, Differential Integral Equations, 21 (2008), 837. Google Scholar

[13]

O. Ladyzhenskaya, Some comments to my papers on the theory of attractors for abstract semigroups,, Zap. Nauchn. Sem. LOMI, 182 (1990), 102. doi: 10.1007/BF01671002. Google Scholar

[14]

J. L. Lions, R. Temam and S. Wang, New formulations of the primitive equations of atmosphere and applications,, Nonlinearity, 5 (1992), 237. doi: 10.1088/0951-7715/5/2/001. Google Scholar

[15]

J. Lions, R. Temam and S. Wang, On the equations of the large scale Ocean,, Nonlinearity, 5 (1992), 1007. doi: 10.1088/0951-7715/5/5/002. Google Scholar

[16]

M. Petcu, On the three dimensional primitive equations,, Adv. Dif. Eq., 11 (2006), 1201. Google Scholar

[17]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics,, Applied Mathematical Sciences, (1988). doi: 10.1007/978-1-4684-0313-8. Google Scholar

[18]

R. Temam, Navier-Stokes equations. Theory and numerical analysis,, reprint of 3rd edition, (2001). doi: 10.1090/chel/343. Google Scholar

[19]

R. Temam and M. Ziane, Some mathematical problems in geophysical fluid dynamics,, Handbook of Mathematical Fluid Dynamics, 3 (2004), 535. Google Scholar

[1]

Ning Ju. The global attractor for the solutions to the 3D viscous primitive equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 159-179. doi: 10.3934/dcds.2007.17.159

[2]

Boling Guo, Guoli Zhou. Finite dimensionality of global attractor for the solutions to 3D viscous primitive equations of large-scale moist atmosphere. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4305-4327. doi: 10.3934/dcdsb.2018160

[3]

T. Tachim Medjo. Non-autonomous 3D primitive equations with oscillating external force and its global attractor. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 265-291. doi: 10.3934/dcds.2012.32.265

[4]

M. Bulíček, F. Ettwein, P. Kaplický, Dalibor Pražák. The dimension of the attractor for the 3D flow of a non-Newtonian fluid. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1503-1520. doi: 10.3934/cpaa.2009.8.1503

[5]

Makram Hamouda, Chang-Yeol Jung, Roger Temam. Asymptotic analysis for the 3D primitive equations in a channel. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 401-422. doi: 10.3934/dcdss.2013.6.401

[6]

Yuan Pei. Continuous data assimilation for the 3D primitive equations of the ocean. Communications on Pure & Applied Analysis, 2019, 18 (2) : 643-661. doi: 10.3934/cpaa.2019032

[7]

Yong Yang, Bingsheng Zhang. On the Kolmogorov entropy of the weak global attractor of 3D Navier-Stokes equations:Ⅰ. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2339-2350. doi: 10.3934/dcdsb.2017101

[8]

Quansen Jiu, Jitao Liu. Global regularity for the 3D axisymmetric MHD Equations with horizontal dissipation and vertical magnetic diffusion. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 301-322. doi: 10.3934/dcds.2015.35.301

[9]

Sadek Gala. A new regularity criterion for the 3D MHD equations in $R^3$. Communications on Pure & Applied Analysis, 2012, 11 (3) : 973-980. doi: 10.3934/cpaa.2012.11.973

[10]

Cristina Lizana, Leonardo Mora. Lower bounds for the Hausdorff dimension of the geometric Lorenz attractor: The homoclinic case. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 699-709. doi: 10.3934/dcds.2008.22.699

[11]

Jiahong Wu. Regularity results for weak solutions of the 3D MHD equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 543-556. doi: 10.3934/dcds.2004.10.543

[12]

Chongsheng Cao. Sufficient conditions for the regularity to the 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1141-1151. doi: 10.3934/dcds.2010.26.1141

[13]

Xuanji Jia, Zaihong Jiang. An anisotropic regularity criterion for the 3D Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1299-1306. doi: 10.3934/cpaa.2013.12.1299

[14]

Xuanji Jia, Yong Zhou. Regularity criteria for the 3D MHD equations via partial derivatives. Kinetic & Related Models, 2012, 5 (3) : 505-516. doi: 10.3934/krm.2012.5.505

[15]

Hui Chen, Daoyuan Fang, Ting Zhang. Regularity of 3D axisymmetric Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1923-1939. doi: 10.3934/dcds.2017081

[16]

Xiaojing Xu, Zhuan Ye. Note on global regularity of 3D generalized magnetohydrodynamic-$\alpha$ model with zero diffusivity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 585-595. doi: 10.3934/cpaa.2015.14.585

[17]

V. V. Chepyzhov, A. A. Ilyin. On the fractal dimension of invariant sets: Applications to Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 117-135. doi: 10.3934/dcds.2004.10.117

[18]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[19]

Michael L. Frankel, Victor Roytburd. Fractal dimension of attractors for a Stefan problem. Conference Publications, 2003, 2003 (Special) : 281-287. doi: 10.3934/proc.2003.2003.281

[20]

Gabriel Deugoue. Approximation of the trajectory attractor of the 3D MHD System. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2119-2144. doi: 10.3934/cpaa.2013.12.2119

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]