# American Institute of Mathematical Sciences

December  2016, 36(12): 6767-6780. doi: 10.3934/dcds.2016094

## Classification of positive solutions to a Lane-Emden type integral system with negative exponents

 1 School of Statistics, Xi'an University of Finance and Economics, Xi'an, Shaanxi, 710100 2 School of National Fiscal Development, Central University of Finance and Economics, Beijing 100081, China 3 School of Mathematical and Statistical Sciences, University of Texas Rio Grande Valley, Edinburg, TX 78539, United States

Received  January 2016 Revised  April 2016 Published  October 2016

In this paper, we classify the positive solutions to the following Lane-Emden type integral system with negative exponents \begin{equation*} \begin{cases} u(x)&= \displaystyle \int_{\mathbb{R}^{n}}|x-y|^{\tau} u^{-p}(y)v^{-q}(y) \, dy, ~x\in \mathbb{R}^{n}, \\ v(x)&= \displaystyle \int_{\mathbb{R}^{n}}|x-y|^{\tau}u^{-r}(y)v^{-s}(y) \, dy,~ x\in \mathbb{R}^{n}, \end{cases} \end{equation*}where $n \geq 1$ is an integer and $\tau, p,q,r,s>0.$ Particularly, using an integral form of the method of moving spheres, we classify the positive solutions to the integral system whenever $$p+q=r+s=1 + 2n/\tau.$$ We also establish the non-existence of positive solutions under the condition $$\max\{p+q,r+s\} \leq 1 + 2n/\tau \,\text{ and }\, p + q + r + s < 2(1 + 2n/\tau).$$
Citation: Jingbo Dou, Fangfang Ren, John Villavert. Classification of positive solutions to a Lane-Emden type integral system with negative exponents. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6767-6780. doi: 10.3934/dcds.2016094
##### References:
 [1] G. Caristi, L. D'Ambrosio and E. Mitidieri, Representation formulae for solutions to some classes of higher order systems and related Liouville theorems,, Milan J. Math., 76 (2008), 27. doi: 10.1007/s00032-008-0090-3. Google Scholar [2] W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330. doi: 10.1002/cpa.20116. Google Scholar [3] W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Comm. Partial Differential Equations, 30 (2005), 59. doi: 10.1081/PDE-200044445. Google Scholar [4] W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation,, Discrete Contin. Dyn. Syst, 12 (2005), 347. Google Scholar [5] W. Chen and C. Li, An integral system and the Lane-Emdem conjecture,, Discrete Contin. Dyn. Syst., 24 (2009), 1167. doi: 10.3934/dcds.2009.24.1167. Google Scholar [6] J. Dou, Liouville type theorems for the system of integral equations,, Appl. Math. Comput., 217 (2010), 2586. doi: 10.1016/j.amc.2010.07.071. Google Scholar [7] J. Dou and M. Zhu, Sharp Hardy-Littlewood-Sobolev inequality on the upper half space,, Int. Math. Res. Not., 3 (2015), 651. Google Scholar [8] J. Dou and M. Zhu, Reversed Hardy-Littlewood-Sobolev inequality,, Int. Math. Res. Not., 19 (2015), 9696. doi: 10.1093/imrn/rnu241. Google Scholar [9] M. Ghergu, Lane-Emden systems with negative exponents,, J. Funct. Anal., 258 (2010), 3295. doi: 10.1016/j.jfa.2010.02.003. Google Scholar [10] Y. Han and M. Zhu, Hardy-Littlewood-Sobolev inequalities on compact Riemannian manifolds and applications., J. Differential Equations, 260 (2016), 1. doi: 10.1016/j.jde.2015.06.032. Google Scholar [11] F. Hang, On the integral systems related to Hardy-Littlewood-Sobolev inequality,, Math. Res. Lett., 14 (2007), 373. doi: 10.4310/MRL.2007.v14.n3.a2. Google Scholar [12] Y. Lei, On the integral systems with negative exponents,, Discrete Contin. Dyn. Syst., 35 (2015), 1039. doi: 10.3934/dcds.2015.35.1039. Google Scholar [13] Y. Lei and C. Li, Sharp criteria of Liouville type for some nonlinear systems,, Discrete Contin. Dyn. Syst., 36 (2016), 3277. doi: 10.3934/dcds.2016.36.3277. Google Scholar [14] C. Li and J. Villavert, A degree theory framework for semilinear elliptic systems,, Proc. Amer. Math. Soc., 144 (2016), 3731. doi: 10.1090/proc/13166. Google Scholar [15] C. Li and J. Villavert, Existence of positive solutions to semilinear elliptic systems with supercritical growth,, Comm. Partial Differential Equations, 41 (2016), 1029. doi: 10.1080/03605302.2016.1190376. Google Scholar [16] Y. Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres,, Duke Math. J., 80 (1995), 383. doi: 10.1215/S0012-7094-95-08016-8. Google Scholar [17] Y. Y. Li and L. Zhang, Liouville type theorems and Harnack type inequalities for semilinear elliptic equations,, J. Anal. Math., 90 (2003), 27. doi: 10.1007/BF02786551. Google Scholar [18] Y. Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres,, J. Eur. Math. Soc. (JEMS), 6 (2004), 153. Google Scholar [19] E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, Ann. of Math., 118 (1983), 349. doi: 10.2307/2007032. Google Scholar [20] J. Liu, Y. Guo and Y. Zhang, Existence of positive entire solutions for polyharmonic equations and systems,, J. Partial Differential Equations, 19 (2006), 256. Google Scholar [21] L. Ma and D. Chen, A Liouville type theorem for an integral system,, Commun. Pure Appl. Anal., 5 (2006), 855. doi: 10.3934/cpaa.2006.5.855. Google Scholar [22] Q. A. Ngô and V. H. Nguyen, Sharp Reversed Hardy-Littlewood-Sobolev inequality on $\mathbfR^n$,, Israel J. Math., (). Google Scholar [23] J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations,, Math. Ann., 313 (1999), 207. doi: 10.1007/s002080050258. Google Scholar [24] X. Xu, Uniqueness theorem for integral equations and its application,, J. Funct. Anal., 247 (2007), 95. doi: 10.1016/j.jfa.2007.03.005. Google Scholar [25] Z. Zhang, Positive solutions of Lane-Emden systems with negative exponents: Existence, boundary behavior and uniqueness,, Nonlinear Anal., 74 (2011), 5544. doi: 10.1016/j.na.2011.05.038. Google Scholar

show all references

##### References:
 [1] G. Caristi, L. D'Ambrosio and E. Mitidieri, Representation formulae for solutions to some classes of higher order systems and related Liouville theorems,, Milan J. Math., 76 (2008), 27. doi: 10.1007/s00032-008-0090-3. Google Scholar [2] W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330. doi: 10.1002/cpa.20116. Google Scholar [3] W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Comm. Partial Differential Equations, 30 (2005), 59. doi: 10.1081/PDE-200044445. Google Scholar [4] W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation,, Discrete Contin. Dyn. Syst, 12 (2005), 347. Google Scholar [5] W. Chen and C. Li, An integral system and the Lane-Emdem conjecture,, Discrete Contin. Dyn. Syst., 24 (2009), 1167. doi: 10.3934/dcds.2009.24.1167. Google Scholar [6] J. Dou, Liouville type theorems for the system of integral equations,, Appl. Math. Comput., 217 (2010), 2586. doi: 10.1016/j.amc.2010.07.071. Google Scholar [7] J. Dou and M. Zhu, Sharp Hardy-Littlewood-Sobolev inequality on the upper half space,, Int. Math. Res. Not., 3 (2015), 651. Google Scholar [8] J. Dou and M. Zhu, Reversed Hardy-Littlewood-Sobolev inequality,, Int. Math. Res. Not., 19 (2015), 9696. doi: 10.1093/imrn/rnu241. Google Scholar [9] M. Ghergu, Lane-Emden systems with negative exponents,, J. Funct. Anal., 258 (2010), 3295. doi: 10.1016/j.jfa.2010.02.003. Google Scholar [10] Y. Han and M. Zhu, Hardy-Littlewood-Sobolev inequalities on compact Riemannian manifolds and applications., J. Differential Equations, 260 (2016), 1. doi: 10.1016/j.jde.2015.06.032. Google Scholar [11] F. Hang, On the integral systems related to Hardy-Littlewood-Sobolev inequality,, Math. Res. Lett., 14 (2007), 373. doi: 10.4310/MRL.2007.v14.n3.a2. Google Scholar [12] Y. Lei, On the integral systems with negative exponents,, Discrete Contin. Dyn. Syst., 35 (2015), 1039. doi: 10.3934/dcds.2015.35.1039. Google Scholar [13] Y. Lei and C. Li, Sharp criteria of Liouville type for some nonlinear systems,, Discrete Contin. Dyn. Syst., 36 (2016), 3277. doi: 10.3934/dcds.2016.36.3277. Google Scholar [14] C. Li and J. Villavert, A degree theory framework for semilinear elliptic systems,, Proc. Amer. Math. Soc., 144 (2016), 3731. doi: 10.1090/proc/13166. Google Scholar [15] C. Li and J. Villavert, Existence of positive solutions to semilinear elliptic systems with supercritical growth,, Comm. Partial Differential Equations, 41 (2016), 1029. doi: 10.1080/03605302.2016.1190376. Google Scholar [16] Y. Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres,, Duke Math. J., 80 (1995), 383. doi: 10.1215/S0012-7094-95-08016-8. Google Scholar [17] Y. Y. Li and L. Zhang, Liouville type theorems and Harnack type inequalities for semilinear elliptic equations,, J. Anal. Math., 90 (2003), 27. doi: 10.1007/BF02786551. Google Scholar [18] Y. Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres,, J. Eur. Math. Soc. (JEMS), 6 (2004), 153. Google Scholar [19] E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, Ann. of Math., 118 (1983), 349. doi: 10.2307/2007032. Google Scholar [20] J. Liu, Y. Guo and Y. Zhang, Existence of positive entire solutions for polyharmonic equations and systems,, J. Partial Differential Equations, 19 (2006), 256. Google Scholar [21] L. Ma and D. Chen, A Liouville type theorem for an integral system,, Commun. Pure Appl. Anal., 5 (2006), 855. doi: 10.3934/cpaa.2006.5.855. Google Scholar [22] Q. A. Ngô and V. H. Nguyen, Sharp Reversed Hardy-Littlewood-Sobolev inequality on $\mathbfR^n$,, Israel J. Math., (). Google Scholar [23] J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations,, Math. Ann., 313 (1999), 207. doi: 10.1007/s002080050258. Google Scholar [24] X. Xu, Uniqueness theorem for integral equations and its application,, J. Funct. Anal., 247 (2007), 95. doi: 10.1016/j.jfa.2007.03.005. Google Scholar [25] Z. Zhang, Positive solutions of Lane-Emden systems with negative exponents: Existence, boundary behavior and uniqueness,, Nonlinear Anal., 74 (2011), 5544. doi: 10.1016/j.na.2011.05.038. Google Scholar
 [1] Wenxiong Chen, Congming Li. An integral system and the Lane-Emden conjecture. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1167-1184. doi: 10.3934/dcds.2009.24.1167 [2] Wenjing Chen, Louis Dupaigne, Marius Ghergu. A new critical curve for the Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2469-2479. doi: 10.3934/dcds.2014.34.2469 [3] Ze Cheng, Genggeng Huang. A Liouville theorem for the subcritical Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1359-1377. doi: 10.3934/dcds.2019058 [4] Hatem Hajlaoui, Abdellaziz Harrabi, Foued Mtiri. Liouville theorems for stable solutions of the weighted Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 265-279. doi: 10.3934/dcds.2017011 [5] Philip Korman, Junping Shi. On lane-emden type systems. Conference Publications, 2005, 2005 (Special) : 510-517. doi: 10.3934/proc.2005.2005.510 [6] Wenxiong Chen, Congming Li. Regularity of solutions for a system of integral equations. Communications on Pure & Applied Analysis, 2005, 4 (1) : 1-8. doi: 10.3934/cpaa.2005.4.1 [7] Igor Freire, Ben Muatjetjeja. Symmetry analysis of a Lane-Emden-Klein-Gordon-Fock system with central symmetry. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 667-673. doi: 10.3934/dcdss.2018041 [8] Mostafa Fazly, Nassif Ghoussoub. On the Hénon-Lane-Emden conjecture. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2513-2533. doi: 10.3934/dcds.2014.34.2513 [9] Filomena Pacella, Dora Salazar. Asymptotic behaviour of sign changing radial solutions of Lane Emden Problems in the annulus. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 793-805. doi: 10.3934/dcdss.2014.7.793 [10] Yutian Lei. On the integral systems with negative exponents. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1039-1057. doi: 10.3934/dcds.2015.35.1039 [11] Changlu Liu, Shuangli Qiao. Symmetry and monotonicity for a system of integral equations. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1925-1932. doi: 10.3934/cpaa.2009.8.1925 [12] Baiyu Liu. Direct method of moving planes for logarithmic Laplacian system in bounded domains. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5339-5349. doi: 10.3934/dcds.2018235 [13] Pengyan Wang, Pengcheng Niu. A direct method of moving planes for a fully nonlinear nonlocal system. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1707-1718. doi: 10.3934/cpaa.2017082 [14] Meixia Dou. A direct method of moving planes for fractional Laplacian equations in the unit ball. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1797-1807. doi: 10.3934/cpaa.2016015 [15] Frank Arthur, Xiaodong Yan. A Liouville-type theorem for higher order elliptic systems of Hé non-Lane-Emden type. Communications on Pure & Applied Analysis, 2016, 15 (3) : 807-830. doi: 10.3934/cpaa.2016.15.807 [16] Zongming Guo, Long Wei. A perturbed fourth order elliptic equation with negative exponent. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4187-4205. doi: 10.3934/dcdsb.2018132 [17] Maria Laura Delle Monache, Paola Goatin. A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 435-447. doi: 10.3934/dcdss.2014.7.435 [18] Z. K. Eshkuvatov, M. Kammuji, Bachok M. Taib, N. M. A. Nik Long. Effective approximation method for solving linear Fredholm-Volterra integral equations. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 77-88. doi: 10.3934/naco.2017004 [19] Stanisław Migórski, Shengda Zeng. The Rothe method for multi-term time fractional integral diffusion equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 719-735. doi: 10.3934/dcdsb.2018204 [20] Miaomiao Cai, Li Ma. Moving planes for nonlinear fractional Laplacian equation with negative powers. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4603-4615. doi: 10.3934/dcds.2018201

2018 Impact Factor: 1.143