December  2016, 36(12): 6737-6765. doi: 10.3934/dcds.2016093

Eigenvalues for a nonlocal pseudo $p-$Laplacian

1. 

CONICET and Departamento de Matemática, FCEyN, Universidad de Buenos Aires, Pabellon I, Ciudad Universitaria, Buenos Aires, 1428, Argentina, Argentina

Received  November 2015 Revised  August 2016 Published  October 2016

In this paper we study the eigenvalue problems for a nonlocal operator of order $s$ that is analogous to the local pseudo $p-$Laplacian. We show that there is a sequence of eigenvalues $\lambda_n \to \infty$ and that the first one is positive, simple, isolated and has a positive and bounded associated eigenfunction. For the first eigenvalue we also analyze the limits as $p\to \infty$ (obtaining a limit nonlocal eigenvalue problem analogous to the pseudo infinity Laplacian) and as $s\to 1^-$ (obtaining the first eigenvalue for a local operator of $p-$Laplacian type). To perform this study we have to introduce anisotropic fractional Sobolev spaces and prove some of their properties.
Citation: Leandro M. Del Pezzo, Julio D. Rossi. Eigenvalues for a nonlocal pseudo $p-$Laplacian. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6737-6765. doi: 10.3934/dcds.2016093
References:
[1]

S. Amghibech, On the discrete version of Picone's identity,, Discrete Appl. Math., 156 (2008), 1. doi: 10.1016/j.dam.2007.05.013. Google Scholar

[2]

A. Anane, Simplicité et isolation de la première valeur propre du $p-$laplacien avec poids,, C. R. Acad. Sci. Paris Sér. I Math., 305 (1987), 725. Google Scholar

[3]

G. Aronsson, M. G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions,, Bull. Amer. Math. Soc., 41 (2004), 439. doi: 10.1090/S0273-0979-04-01035-3. Google Scholar

[4]

M. Belloni and B. Kawohl, The pseudo-p-Laplace eigenvalue problem and viscosity solutions as $p\to \infty$,, ESAIM Control Optim. Calc. Var. 10 (2004), 10 (2004), 28. doi: 10.1051/cocv:2003035. Google Scholar

[5]

T. Bhattacharya, E. Di Benedetto and J. Manfredi, Limits as $p \to \infty$ of $\Delta_p u_p = f$ and related extremal problems,, Rend. Sem. Mat. Univ. Politec. Torino, (1991), 15. Google Scholar

[6]

G. Bouchitte, G. Buttazzo and L. De Pasquale., A $p-$laplacian approximation for some mass optimization problems,, J. Optim. Theory Appl., 118 (2003), 1. doi: 10.1023/A:1024751022715. Google Scholar

[7]

L. Brasco and G. Franzina, Convexity properties of Dirichlet integrals and Picone-type inequalities,, Kodai Math. J., 37 (2014), 769. doi: 10.2996/kmj/1414674621. Google Scholar

[8]

L. Brasco, E. Parini and M. Squassina, Stability of variational eigenvalues for the fractional $p-$Laplacian,, Discr. Cont. Dyn. Sys., 36 (2016), 1813. doi: 10.3934/dcds.2016.36.1813. Google Scholar

[9]

H. Brezis, Analyse fonctionnelle,, Masson, (1983). Google Scholar

[10]

J. Bourgain, H. Brezis and P. Mironescu, Another look at sobolev spaces,, in Optimal Control and Partial Differential Equations, (2001), 439. Google Scholar

[11]

A. Chambolle, E. Lindgren and R. Monneau, The Holder infinite Laplacian and Holder extensions,, ESAIM-COCV, 18 (2012), 799. doi: 10.1051/cocv/2011182. Google Scholar

[12]

M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second order partial differential equations,, Bull. Amer. Math. Soc., 27 (1992), 1. doi: 10.1090/S0273-0979-1992-00266-5. Google Scholar

[13]

F. Della Pietra and N. Gavitone, Sharp bounds for the first eigenvalue and the torsional rigidity related to some anisotropic operators,, Math. Nachr., 287 (2014), 194. doi: 10.1002/mana.201200296. Google Scholar

[14]

F. Demengel and G. Demengel, Functional spaces for the theory of elliptic partial differential equations,, Universitext, (2012). doi: 10.1007/978-1-4471-2807-6. Google Scholar

[15]

A. Di Castro, T. Kuusi and G. Palatucci, Local behavior of fractional $p$-minimizers,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1279. doi: 10.1016/j.anihpc.2015.04.003. Google Scholar

[16]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. math., 136 (2012), 521. doi: 10.1016/j.bulsci.2011.12.004. Google Scholar

[17]

S. Dipierro, X. Ros-Oton and E. Valdinoci, Nonlocal problems with Neumann boundary conditions,, to appear in Rev. Mat. Iberoam.., (). Google Scholar

[18]

L. C. Evans and W. Gangbo, Differential equations methods for the Monge-Kantorovich mass transfer problem., Mem. Amer. Math. Soc., 137 (1999). doi: 10.1090/memo/0653. Google Scholar

[19]

L. C. Evans and C. K. Smart, Everywhere differentiability of infinity harmonic functions,, Calc. Var. Partial Differential Equations, 42 (2011), 289. doi: 10.1007/s00526-010-0388-1. Google Scholar

[20]

L. C. Evans and C. K. Smart, Adjoint methods for the infinity Laplacian partial differential equation,, Arch. Ration. Mech. Anal., 201 (2011), 87. doi: 10.1007/s00205-011-0399-x. Google Scholar

[21]

J. Garcia-Azorero and I. Peral, Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term,, Trans. Amer. Math. Soc., 323 (1991), 877. doi: 10.1090/S0002-9947-1991-1083144-2. Google Scholar

[22]

G. Franzina and G. Palatucci, Fractional p-eigenvalues,, Riv. Math. Univ. Parma (N.S.), 5 (2014), 373. Google Scholar

[23]

A. Iannizzotto, S. Mosconi, and M. Squassina, Global Hölder regularity for the fractional $p-$Laplacian,, to appear in Rev. Mat. Iberoam., (). Google Scholar

[24]

J. Jaros, Picone's identity for a Finsler p-Laplacian and comparison of nonlinear elliptic equations,, Math. Bohem., 139 (2014), 535. Google Scholar

[25]

H. Jylha, An optimal transportation problem related to the limits of solutions of local and nonlocal $p-$Laplace- type problems,, Rev. Mat. Complutense, 28 (2015), 85. doi: 10.1007/s13163-014-0147-5. Google Scholar

[26]

P. Juutinen, P. Lindqvist and J. J. Manfredi, The $\infty-$eigenvalue problem,, Arch. Rational Mech. Anal., 148 (1999), 89. doi: 10.1007/s002050050157. Google Scholar

[27]

P. Juutinen and P. Lindqvist, On the higher eigenvalues for the $\infty-$eigenvalue problem,, Calc. Var. Partial Differential Equations, 23 (2005), 169. doi: 10.1007/s00526-004-0295-4. Google Scholar

[28]

E. Lindgren and P. Lindqvist, Fractional eigenvalues,, Calc. Var. Partial Differential Equations, 49 (2014), 795. doi: 10.1007/s00526-013-0600-1. Google Scholar

[29]

G. Molica Bisci, Sequence of weak solutions for fractional equations,, Math. Research Lett., 21 (2014), 241. doi: 10.4310/MRL.2014.v21.n2.a3. Google Scholar

[30]

G. Molica Bisci, Fractional equations with bounded primitive,, Appl. Math. Lett., 27 (2014), 53. doi: 10.1016/j.aml.2013.07.011. Google Scholar

[31]

G. Molica Bisci and B. A. Pansera, Three weak solutions for nonlocal fractional equations,, Adv. Nonlinear Stud., 14 (2014), 619. Google Scholar

[32]

M. Moussa, Schwarz rearrangement does not decrease the energy for the pseudo $p-$Laplacian operator,, Bol. Soc. Parana. Mat. (3), 29 (2011), 49. doi: 10.5269/bspm.v29i1.10428. Google Scholar

[33]

J. D. Rossi and M. Saez, Optimal regularity for the pseudo infinity Laplacian,, ESAIM. Control, 13 (2007), 294. doi: 10.1051/cocv:2007018. Google Scholar

[34]

O. Savin, $C^1$ regularity for infinity harmonic functions in two dimensions,, Arch. Rational Mech. Anal., 176 (2005), 351. doi: 10.1007/s00205-005-0355-8. Google Scholar

show all references

References:
[1]

S. Amghibech, On the discrete version of Picone's identity,, Discrete Appl. Math., 156 (2008), 1. doi: 10.1016/j.dam.2007.05.013. Google Scholar

[2]

A. Anane, Simplicité et isolation de la première valeur propre du $p-$laplacien avec poids,, C. R. Acad. Sci. Paris Sér. I Math., 305 (1987), 725. Google Scholar

[3]

G. Aronsson, M. G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions,, Bull. Amer. Math. Soc., 41 (2004), 439. doi: 10.1090/S0273-0979-04-01035-3. Google Scholar

[4]

M. Belloni and B. Kawohl, The pseudo-p-Laplace eigenvalue problem and viscosity solutions as $p\to \infty$,, ESAIM Control Optim. Calc. Var. 10 (2004), 10 (2004), 28. doi: 10.1051/cocv:2003035. Google Scholar

[5]

T. Bhattacharya, E. Di Benedetto and J. Manfredi, Limits as $p \to \infty$ of $\Delta_p u_p = f$ and related extremal problems,, Rend. Sem. Mat. Univ. Politec. Torino, (1991), 15. Google Scholar

[6]

G. Bouchitte, G. Buttazzo and L. De Pasquale., A $p-$laplacian approximation for some mass optimization problems,, J. Optim. Theory Appl., 118 (2003), 1. doi: 10.1023/A:1024751022715. Google Scholar

[7]

L. Brasco and G. Franzina, Convexity properties of Dirichlet integrals and Picone-type inequalities,, Kodai Math. J., 37 (2014), 769. doi: 10.2996/kmj/1414674621. Google Scholar

[8]

L. Brasco, E. Parini and M. Squassina, Stability of variational eigenvalues for the fractional $p-$Laplacian,, Discr. Cont. Dyn. Sys., 36 (2016), 1813. doi: 10.3934/dcds.2016.36.1813. Google Scholar

[9]

H. Brezis, Analyse fonctionnelle,, Masson, (1983). Google Scholar

[10]

J. Bourgain, H. Brezis and P. Mironescu, Another look at sobolev spaces,, in Optimal Control and Partial Differential Equations, (2001), 439. Google Scholar

[11]

A. Chambolle, E. Lindgren and R. Monneau, The Holder infinite Laplacian and Holder extensions,, ESAIM-COCV, 18 (2012), 799. doi: 10.1051/cocv/2011182. Google Scholar

[12]

M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second order partial differential equations,, Bull. Amer. Math. Soc., 27 (1992), 1. doi: 10.1090/S0273-0979-1992-00266-5. Google Scholar

[13]

F. Della Pietra and N. Gavitone, Sharp bounds for the first eigenvalue and the torsional rigidity related to some anisotropic operators,, Math. Nachr., 287 (2014), 194. doi: 10.1002/mana.201200296. Google Scholar

[14]

F. Demengel and G. Demengel, Functional spaces for the theory of elliptic partial differential equations,, Universitext, (2012). doi: 10.1007/978-1-4471-2807-6. Google Scholar

[15]

A. Di Castro, T. Kuusi and G. Palatucci, Local behavior of fractional $p$-minimizers,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1279. doi: 10.1016/j.anihpc.2015.04.003. Google Scholar

[16]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. math., 136 (2012), 521. doi: 10.1016/j.bulsci.2011.12.004. Google Scholar

[17]

S. Dipierro, X. Ros-Oton and E. Valdinoci, Nonlocal problems with Neumann boundary conditions,, to appear in Rev. Mat. Iberoam.., (). Google Scholar

[18]

L. C. Evans and W. Gangbo, Differential equations methods for the Monge-Kantorovich mass transfer problem., Mem. Amer. Math. Soc., 137 (1999). doi: 10.1090/memo/0653. Google Scholar

[19]

L. C. Evans and C. K. Smart, Everywhere differentiability of infinity harmonic functions,, Calc. Var. Partial Differential Equations, 42 (2011), 289. doi: 10.1007/s00526-010-0388-1. Google Scholar

[20]

L. C. Evans and C. K. Smart, Adjoint methods for the infinity Laplacian partial differential equation,, Arch. Ration. Mech. Anal., 201 (2011), 87. doi: 10.1007/s00205-011-0399-x. Google Scholar

[21]

J. Garcia-Azorero and I. Peral, Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term,, Trans. Amer. Math. Soc., 323 (1991), 877. doi: 10.1090/S0002-9947-1991-1083144-2. Google Scholar

[22]

G. Franzina and G. Palatucci, Fractional p-eigenvalues,, Riv. Math. Univ. Parma (N.S.), 5 (2014), 373. Google Scholar

[23]

A. Iannizzotto, S. Mosconi, and M. Squassina, Global Hölder regularity for the fractional $p-$Laplacian,, to appear in Rev. Mat. Iberoam., (). Google Scholar

[24]

J. Jaros, Picone's identity for a Finsler p-Laplacian and comparison of nonlinear elliptic equations,, Math. Bohem., 139 (2014), 535. Google Scholar

[25]

H. Jylha, An optimal transportation problem related to the limits of solutions of local and nonlocal $p-$Laplace- type problems,, Rev. Mat. Complutense, 28 (2015), 85. doi: 10.1007/s13163-014-0147-5. Google Scholar

[26]

P. Juutinen, P. Lindqvist and J. J. Manfredi, The $\infty-$eigenvalue problem,, Arch. Rational Mech. Anal., 148 (1999), 89. doi: 10.1007/s002050050157. Google Scholar

[27]

P. Juutinen and P. Lindqvist, On the higher eigenvalues for the $\infty-$eigenvalue problem,, Calc. Var. Partial Differential Equations, 23 (2005), 169. doi: 10.1007/s00526-004-0295-4. Google Scholar

[28]

E. Lindgren and P. Lindqvist, Fractional eigenvalues,, Calc. Var. Partial Differential Equations, 49 (2014), 795. doi: 10.1007/s00526-013-0600-1. Google Scholar

[29]

G. Molica Bisci, Sequence of weak solutions for fractional equations,, Math. Research Lett., 21 (2014), 241. doi: 10.4310/MRL.2014.v21.n2.a3. Google Scholar

[30]

G. Molica Bisci, Fractional equations with bounded primitive,, Appl. Math. Lett., 27 (2014), 53. doi: 10.1016/j.aml.2013.07.011. Google Scholar

[31]

G. Molica Bisci and B. A. Pansera, Three weak solutions for nonlocal fractional equations,, Adv. Nonlinear Stud., 14 (2014), 619. Google Scholar

[32]

M. Moussa, Schwarz rearrangement does not decrease the energy for the pseudo $p-$Laplacian operator,, Bol. Soc. Parana. Mat. (3), 29 (2011), 49. doi: 10.5269/bspm.v29i1.10428. Google Scholar

[33]

J. D. Rossi and M. Saez, Optimal regularity for the pseudo infinity Laplacian,, ESAIM. Control, 13 (2007), 294. doi: 10.1051/cocv:2007018. Google Scholar

[34]

O. Savin, $C^1$ regularity for infinity harmonic functions in two dimensions,, Arch. Rational Mech. Anal., 176 (2005), 351. doi: 10.1007/s00205-005-0355-8. Google Scholar

[1]

Bhargav Kumar Kakumani, Suman Kumar Tumuluri. Asymptotic behavior of the solution of a diffusion equation with nonlocal boundary conditions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 407-419. doi: 10.3934/dcdsb.2017019

[2]

Huicong Li, Jingyu Li. Asymptotic behavior of Dirichlet eigenvalues on a body coated by functionally graded material. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1493-1516. doi: 10.3934/cpaa.2017071

[3]

Ciprian G. Gal, M. Grasselli. On the asymptotic behavior of the Caginalp system with dynamic boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 689-710. doi: 10.3934/cpaa.2009.8.689

[4]

Zhenhua Zhang. Asymptotic behavior of solutions to the phase-field equations with neumann boundary conditions. Communications on Pure & Applied Analysis, 2005, 4 (3) : 683-693. doi: 10.3934/cpaa.2005.4.683

[5]

Guanggan Chen, Jian Zhang. Asymptotic behavior for a stochastic wave equation with dynamical boundary conditions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1441-1453. doi: 10.3934/dcdsb.2012.17.1441

[6]

E. C.M. Crooks, E. N. Dancer, Danielle Hilhorst. Fast reaction limit and long time behavior for a competition-diffusion system with Dirichlet boundary conditions. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 39-44. doi: 10.3934/dcdsb.2007.8.39

[7]

Vesselin Petkov. Location of eigenvalues for the wave equation with dissipative boundary conditions. Inverse Problems & Imaging, 2016, 10 (4) : 1111-1139. doi: 10.3934/ipi.2016034

[8]

Monica Conti, Stefania Gatti, Alain Miranville. Asymptotic behavior of the Caginalp phase-field system with coupled dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 485-505. doi: 10.3934/dcdss.2012.5.485

[9]

Ciprian G. Gal, Hao Wu. Asymptotic behavior of a Cahn-Hilliard equation with Wentzell boundary conditions and mass conservation. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 1041-1063. doi: 10.3934/dcds.2008.22.1041

[10]

Dorina Mitrea, Marius Mitrea, Sylvie Monniaux. The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1295-1333. doi: 10.3934/cpaa.2008.7.1295

[11]

Carmen Cortázar, Manuel Elgueta, Fernando Quirós, Noemí Wolanski. Asymptotic behavior for a nonlocal diffusion equation on the half line. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1391-1407. doi: 10.3934/dcds.2015.35.1391

[12]

Micol Amar. A note on boundary layer effects in periodic homogenization with Dirichlet boundary conditions. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 537-556. doi: 10.3934/dcds.2000.6.537

[13]

Gennaro Infante. Eigenvalues and positive solutions of odes involving integral boundary conditions. Conference Publications, 2005, 2005 (Special) : 436-442. doi: 10.3934/proc.2005.2005.436

[14]

Yueding Yuan, Zhiming Guo, Moxun Tang. A nonlocal diffusion population model with age structure and Dirichlet boundary condition. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2095-2115. doi: 10.3934/cpaa.2015.14.2095

[15]

Gabriella Di Blasio. Ultraparabolic equations with nonlocal delayed boundary conditions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4945-4965. doi: 10.3934/dcds.2013.33.4945

[16]

Silvia Frassu. Nonlinear Dirichlet problem for the nonlocal anisotropic operator $ L_K $. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1847-1867. doi: 10.3934/cpaa.2019086

[17]

Chunpeng Wang. Boundary behavior and asymptotic behavior of solutions to a class of parabolic equations with boundary degeneracy. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1041-1060. doi: 10.3934/dcds.2016.36.1041

[18]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[19]

Carmen Calvo-Jurado, Juan Casado-Díaz, Manuel Luna-Laynez. Parabolic problems with varying operators and Dirichlet and Neumann boundary conditions on varying sets. Conference Publications, 2007, 2007 (Special) : 181-190. doi: 10.3934/proc.2007.2007.181

[20]

Tian Ma, Shouhong Wang. Structure of 2D incompressible flows with the Dirichlet boundary conditions. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 29-41. doi: 10.3934/dcdsb.2001.1.29

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]