December  2016, 36(12): 6623-6643. doi: 10.3934/dcds.2016087

The influence of magnetic steps on bulk superconductivity

1. 

Lund University, Department of Mathematics, Box 118, SE-22100, Lund, Sweden

2. 

Lebanese University, Department of Mathematics, Hadath, Lebanon

Received  January 2016 Revised  March 2016 Published  October 2016

We study the distribution of bulk superconductivity in presence of an applied magnetic field, supposed to be a step function, modeled by the Ginzburg-Landau theory. Our results are valid for the minimizers of the two-dimensional Ginzburg-Landau functional with a large Ginzburg-Landau parameter and with an applied magnetic field of intensity comparable with the Ginzburg-Landau parameter.
Citation: Wafaa Assaad, Ayman Kachmar. The influence of magnetic steps on bulk superconductivity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6623-6643. doi: 10.3934/dcds.2016087
References:
[1]

Y. Almog, B. Helffer and X. B. Pan, Mixed normal-superconducting states in the presence of strong electric currents,, Arch. Rational Mech. Anal. (2016). doi:10.1007/s00205-016-1037-4, (2016), 00205. Google Scholar

[2]

K. Attar, The ground state energy of the two dimensional Ginzburg-Landau functional with variable magnetic field,, Ann. I.H.Poincaré-AN, 32 (2015), 325. doi: 10.1016/j.anihpc.2013.12.002. Google Scholar

[3]

K. Attar, Energy and vorticity of the Ginzburg-Landau model with variable magnetic field,, Asympt. Anal., 93 (2015), 75. doi: 10.3233/ASY-151286. Google Scholar

[4]

K. Attar, Pinning with a variable magnetic field of the two dimensional Ginzburg-Landau model,, Non-Linear Analysis: TMA., 139 (2016), 1. doi: 10.1016/j.na.2016.02.002. Google Scholar

[5]

V. Bonnaillie-Noël and S. Fournais, Superconductivity in domains with corners,, Rev. Math. Phys., 19 (2007), 607. doi: 10.1142/S0129055X07003061. Google Scholar

[6]

S. J. Chapman, Q. Du and M. D. Gunzburger, A Ginzburg-Landau type model of superconducting/normal junctions including Josephson junctions,, European Journal of Applied Mathematics, 6 (1995), 97. doi: 10.1017/S0956792500001716. Google Scholar

[7]

A. Contreras and X. Lamy, Persistence of superconductivity in thin shells beyond Hc1,, Commun. Contemp. Math., 18 (2016). doi: 10.1142/S0219199715500479. Google Scholar

[8]

S. Fournais and B. Helffer, Spectral Methods in Surface Superconductivity,, Progress in Nonlinear Differential Equations and their Applications. Vol. 77, (2010). Google Scholar

[9]

S. Fournais and A. Kachmar, The ground state energy of the three dimensional Ginzburg-Landau functional. Part I: Bulk regime,, Commun. Part. Diff. Equations, 38 (2013), 339. doi: 10.1080/03605302.2012.717156. Google Scholar

[10]

S. Fournais and A. Kachmar, Nucleation of bulk superconductivity close to critical magnetic field,, Adv. Math., 226 (2011), 1213. doi: 10.1016/j.aim.2010.08.004. Google Scholar

[11]

S. Fournais and A. Kachmar, On the transition to the normal phase for superconductors surrounded by normal conductors,, J. Differential Equations, 247 (2009), 1637. doi: 10.1016/j.jde.2009.04.012. Google Scholar

[12]

T. Giorgi and D. Phillips, The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model,, SIAM J. Math. Anal., 30 (1999), 341. doi: 10.1137/S0036141097323163. Google Scholar

[13]

B. Helffer and A. Mohamed, Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells,, J. Funct. Anal., 138 (1996), 40. doi: 10.1006/jfan.1996.0056. Google Scholar

[14]

B. Helffer and A. Kachmar, The ginzburg-landau functional with vanishing magnetic field,, Arch. Rational Mech. Anal., 218 (2015), 55. doi: 10.1007/s00205-015-0856-z. Google Scholar

[15]

P. D. Hislop, N. Popoff, N. Raymond and M. P. Sundqvist, Band functions in presence of magnetic steps,, Mathematical Models and Methods in Applied Sciences, 26 (2016), 161. doi: 10.1142/S0218202516500056. Google Scholar

[16]

A. Kachmar, The ground state energy of the three-dimensional Ginzburg-Landau model in the mixed phase,, J. Funct. Anal., 261 (2011), 3328. doi: 10.1016/j.jfa.2011.08.002. Google Scholar

[17]

A. Kachmar, On the perfect superconducting solution for a generalized Ginzburg-Landau equation,, Asymptot. Anal., 54 (2007), 125. Google Scholar

[18]

K. Lu and X. B. Pan, Estimates of the upper critical field for the Ginzburg-Landau equations of superconductivity,, Physica D, 127 (1999), 73. doi: 10.1016/S0167-2789(98)00246-2. Google Scholar

[19]

K. Lu and X. B. Pan, Surface nucleation of superconductivity in 3-dimension,, J. Differential Equations, 168 (2000), 386. doi: 10.1006/jdeq.2000.3892. Google Scholar

[20]

X. B. Pan and K. H. Kwek, Schrödinger operators with non-degenerately vanishing magnetic fields in bounded domains,, Tran. Amer. Math. Soc., 354 (2002), 4201. doi: 10.1090/S0002-9947-02-03033-7. Google Scholar

[21]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis,, Vol. 343. American Mathematical Soc., (2001). doi: 10.1090/chel/343. Google Scholar

[22]

E. Sandier and S. Serfaty, Vortices in the Magnetic Ginzburg-Landau Model,, Progress in Nonlinear Partial Differential Equations and Their Applications. Vol. 70, (2007). Google Scholar

[23]

E. Sandier and S. Serfaty, The decrease of bulk superconductivity close to the second critical field in the Ginzburg-Landau model,, SIAM J. Math. Anal., 34 (2003), 939. doi: 10.1137/S0036141002406084. Google Scholar

show all references

References:
[1]

Y. Almog, B. Helffer and X. B. Pan, Mixed normal-superconducting states in the presence of strong electric currents,, Arch. Rational Mech. Anal. (2016). doi:10.1007/s00205-016-1037-4, (2016), 00205. Google Scholar

[2]

K. Attar, The ground state energy of the two dimensional Ginzburg-Landau functional with variable magnetic field,, Ann. I.H.Poincaré-AN, 32 (2015), 325. doi: 10.1016/j.anihpc.2013.12.002. Google Scholar

[3]

K. Attar, Energy and vorticity of the Ginzburg-Landau model with variable magnetic field,, Asympt. Anal., 93 (2015), 75. doi: 10.3233/ASY-151286. Google Scholar

[4]

K. Attar, Pinning with a variable magnetic field of the two dimensional Ginzburg-Landau model,, Non-Linear Analysis: TMA., 139 (2016), 1. doi: 10.1016/j.na.2016.02.002. Google Scholar

[5]

V. Bonnaillie-Noël and S. Fournais, Superconductivity in domains with corners,, Rev. Math. Phys., 19 (2007), 607. doi: 10.1142/S0129055X07003061. Google Scholar

[6]

S. J. Chapman, Q. Du and M. D. Gunzburger, A Ginzburg-Landau type model of superconducting/normal junctions including Josephson junctions,, European Journal of Applied Mathematics, 6 (1995), 97. doi: 10.1017/S0956792500001716. Google Scholar

[7]

A. Contreras and X. Lamy, Persistence of superconductivity in thin shells beyond Hc1,, Commun. Contemp. Math., 18 (2016). doi: 10.1142/S0219199715500479. Google Scholar

[8]

S. Fournais and B. Helffer, Spectral Methods in Surface Superconductivity,, Progress in Nonlinear Differential Equations and their Applications. Vol. 77, (2010). Google Scholar

[9]

S. Fournais and A. Kachmar, The ground state energy of the three dimensional Ginzburg-Landau functional. Part I: Bulk regime,, Commun. Part. Diff. Equations, 38 (2013), 339. doi: 10.1080/03605302.2012.717156. Google Scholar

[10]

S. Fournais and A. Kachmar, Nucleation of bulk superconductivity close to critical magnetic field,, Adv. Math., 226 (2011), 1213. doi: 10.1016/j.aim.2010.08.004. Google Scholar

[11]

S. Fournais and A. Kachmar, On the transition to the normal phase for superconductors surrounded by normal conductors,, J. Differential Equations, 247 (2009), 1637. doi: 10.1016/j.jde.2009.04.012. Google Scholar

[12]

T. Giorgi and D. Phillips, The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model,, SIAM J. Math. Anal., 30 (1999), 341. doi: 10.1137/S0036141097323163. Google Scholar

[13]

B. Helffer and A. Mohamed, Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells,, J. Funct. Anal., 138 (1996), 40. doi: 10.1006/jfan.1996.0056. Google Scholar

[14]

B. Helffer and A. Kachmar, The ginzburg-landau functional with vanishing magnetic field,, Arch. Rational Mech. Anal., 218 (2015), 55. doi: 10.1007/s00205-015-0856-z. Google Scholar

[15]

P. D. Hislop, N. Popoff, N. Raymond and M. P. Sundqvist, Band functions in presence of magnetic steps,, Mathematical Models and Methods in Applied Sciences, 26 (2016), 161. doi: 10.1142/S0218202516500056. Google Scholar

[16]

A. Kachmar, The ground state energy of the three-dimensional Ginzburg-Landau model in the mixed phase,, J. Funct. Anal., 261 (2011), 3328. doi: 10.1016/j.jfa.2011.08.002. Google Scholar

[17]

A. Kachmar, On the perfect superconducting solution for a generalized Ginzburg-Landau equation,, Asymptot. Anal., 54 (2007), 125. Google Scholar

[18]

K. Lu and X. B. Pan, Estimates of the upper critical field for the Ginzburg-Landau equations of superconductivity,, Physica D, 127 (1999), 73. doi: 10.1016/S0167-2789(98)00246-2. Google Scholar

[19]

K. Lu and X. B. Pan, Surface nucleation of superconductivity in 3-dimension,, J. Differential Equations, 168 (2000), 386. doi: 10.1006/jdeq.2000.3892. Google Scholar

[20]

X. B. Pan and K. H. Kwek, Schrödinger operators with non-degenerately vanishing magnetic fields in bounded domains,, Tran. Amer. Math. Soc., 354 (2002), 4201. doi: 10.1090/S0002-9947-02-03033-7. Google Scholar

[21]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis,, Vol. 343. American Mathematical Soc., (2001). doi: 10.1090/chel/343. Google Scholar

[22]

E. Sandier and S. Serfaty, Vortices in the Magnetic Ginzburg-Landau Model,, Progress in Nonlinear Partial Differential Equations and Their Applications. Vol. 70, (2007). Google Scholar

[23]

E. Sandier and S. Serfaty, The decrease of bulk superconductivity close to the second critical field in the Ginzburg-Landau model,, SIAM J. Math. Anal., 34 (2003), 939. doi: 10.1137/S0036141002406084. Google Scholar

[1]

Hassen Aydi, Ayman Kachmar. Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint. II. Communications on Pure & Applied Analysis, 2009, 8 (3) : 977-998. doi: 10.3934/cpaa.2009.8.977

[2]

Shujuan Lü, Chunbiao Gan, Baohua Wang, Linning Qian, Meisheng Li. Traveling wave solutions and its stability for 3D Ginzburg-Landau type equation. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 507-527. doi: 10.3934/dcdsb.2011.16.507

[3]

Dmitry Glotov, P. J. McKenna. Numerical mountain pass solutions of Ginzburg-Landau type equations. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1345-1359. doi: 10.3934/cpaa.2008.7.1345

[4]

N. Maaroufi. Topological entropy by unit length for the Ginzburg-Landau equation on the line. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 647-662. doi: 10.3934/dcds.2014.34.647

[5]

Jingna Li, Li Xia. The Fractional Ginzburg-Landau equation with distributional initial data. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2173-2187. doi: 10.3934/cpaa.2013.12.2173

[6]

Hans G. Kaper, Peter Takáč. Bifurcating vortex solutions of the complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 871-880. doi: 10.3934/dcds.1999.5.871

[7]

Satoshi Kosugi, Yoshihisa Morita, Shoji Yotsutani. A complete bifurcation diagram of the Ginzburg-Landau equation with periodic boundary conditions. Communications on Pure & Applied Analysis, 2005, 4 (3) : 665-682. doi: 10.3934/cpaa.2005.4.665

[8]

Jun Yang. Vortex structures for Klein-Gordon equation with Ginzburg-Landau nonlinearity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2359-2388. doi: 10.3934/dcds.2014.34.2359

[9]

Noboru Okazawa, Tomomi Yokota. Subdifferential operator approach to strong wellposedness of the complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 311-341. doi: 10.3934/dcds.2010.28.311

[10]

Sen-Zhong Huang, Peter Takáč. Global smooth solutions of the complex Ginzburg-Landau equation and their dynamical properties. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 825-848. doi: 10.3934/dcds.1999.5.825

[11]

Hans G. Kaper, Bixiang Wang, Shouhong Wang. Determining nodes for the Ginzburg-Landau equations of superconductivity. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 205-224. doi: 10.3934/dcds.1998.4.205

[12]

Mickaël Dos Santos, Oleksandr Misiats. Ginzburg-Landau model with small pinning domains. Networks & Heterogeneous Media, 2011, 6 (4) : 715-753. doi: 10.3934/nhm.2011.6.715

[13]

Fanghua Lin, Ping Zhang. On the hydrodynamic limit of Ginzburg-Landau vortices. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 121-142. doi: 10.3934/dcds.2000.6.121

[14]

Hongzi Cong, Jianjun Liu, Xiaoping Yuan. Quasi-periodic solutions for complex Ginzburg-Landau equation of nonlinearity $|u|^{2p}u$. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 579-600. doi: 10.3934/dcdss.2010.3.579

[15]

Michael Stich, Carsten Beta. Standing waves in a complex Ginzburg-Landau equation with time-delay feedback. Conference Publications, 2011, 2011 (Special) : 1329-1334. doi: 10.3934/proc.2011.2011.1329

[16]

Boling Guo, Bixiang Wang. Gevrey regularity and approximate inertial manifolds for the derivative Ginzburg-Landau equation in two spatial dimensions. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 455-466. doi: 10.3934/dcds.1996.2.455

[17]

N. I. Karachalios, Hector E. Nistazakis, Athanasios N. Yannacopoulos. Asymptotic behavior of solutions of complex discrete evolution equations: The discrete Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 711-736. doi: 10.3934/dcds.2007.19.711

[18]

Yueling Jia, Zhaohui Huo. Inviscid limit behavior of solution for the multi-dimensional derivative complex Ginzburg-Landau equation. Kinetic & Related Models, 2014, 7 (1) : 57-77. doi: 10.3934/krm.2014.7.57

[19]

Shujuan Lü, Hong Lu, Zhaosheng Feng. Stochastic dynamics of 2D fractional Ginzburg-Landau equation with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 575-590. doi: 10.3934/dcdsb.2016.21.575

[20]

Hong Lu, Shujuan Lü, Mingji Zhang. Fourier spectral approximations to the dynamics of 3D fractional complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2539-2564. doi: 10.3934/dcds.2017109

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]