November  2016, 36(11): 6285-6306. doi: 10.3934/dcds.2016073

Exponential stabilization of a structure with interfacial slip

1. 

University of Wollongong in Dubai, Dubai, United Arab Emirates

2. 

Department of Mathematics and Statistics, College of Sciences, King Fahd University of Petroleum and Minerals, P.O.Box. 5005, Dhahran 31261

Received  May 2015 Revised  July 2016 Published  August 2016

Two exponential stabilization results are proved for a vibrating structure subject to an interfacial slip. More precisely, the structure consists of two identical beams of Timoshenko type and clamped together but allowing for a longitudinal movement between the layers. We will stabilize the system through a transverse friction and also through a viscoelastic damping.
Citation: Assane Lo, Nasser-eddine Tatar. Exponential stabilization of a structure with interfacial slip. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6285-6306. doi: 10.3934/dcds.2016073
References:
[1]

Ammar-Khodja, A. Benabdallah and J. E. M. Rivera, Energy decay for Timoshenko system of memory type,, J. Diff. Eqs., 194 (2003), 82. doi: 10.1016/S0022-0396(03)00185-2. Google Scholar

[2]

C. F. Beards and I. M. A. Imam, The damping of plate vibration by interfacial slip between layers,, Int. J. Mach. Tool. Des. Res., 18 (1978), 131. doi: 10.1016/0020-7357(78)90004-5. Google Scholar

[3]

X.-G. Cao, D.-Y. Liu and G.-Q. Xu, Easy test for stability of laminated beams with structural damping and boundary feedback controls,, J. Dynamical Control Syst., 13 (2007), 313. doi: 10.1007/s10883-007-9022-8. Google Scholar

[4]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. Ferreira, Existence and uniform decay for nonlinear viscoelastic equation with strong damping,, Math. Meth. Appl. Sci., 24 (2001), 1043. doi: 10.1002/mma.250. Google Scholar

[5]

M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. S. Prates Filho and J. A. Soriano, Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping,, Diff. Integral Eqs., 14 (2001), 85. Google Scholar

[6]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and P. Martinez, General decay rate estimates for viscoelastic dissipative systems,, Nonl. Anal.: T. M. A., 68 (2008), 177. doi: 10.1016/j.na.2006.10.040. Google Scholar

[7]

M. M. Cavalcanti and H. P. Oquendo, Frictional versus viscoelastic damping in a semilinear wave equation,, SIAM J. Control Optim., 42 (2003), 1310. doi: 10.1137/S0363012902408010. Google Scholar

[8]

M. De Lima Santos, Decay rates for solutions of a Timoshenko system with memory conditions at the boundary,, Abstr. Appl. Anal., 7 (2002), 53. doi: 10.1155/S1085337502204133. Google Scholar

[9]

X. S. Han and M. X. Wang, Global existence and uniform decay for a nonlinear viscoelastic equation with damping,, Nonl. Anal.: T. M. A., 70 (2009), 3090. doi: 10.1016/j.na.2008.04.011. Google Scholar

[10]

S. W. Hansen and R. Spies, Structural damping in a laminated beam due to interfacial slip,, J. Sound Vibration, 204 (1997), 183. doi: 10.1006/jsvi.1996.0913. Google Scholar

[11]

Z. Liu and C. Pang, Exponential stability of a viscoelastic Timoshenko beam,, Adv. Math. Sci. Appl., 8 (1998), 343. Google Scholar

[12]

A. Lo and N.-e. Tatar, Stabilization of a laminated beam with interfacial slip,, Electron. J. Diff. Eqs., 129 (2015), 1. Google Scholar

[13]

M. Medjden and N.-e. Tatar, On the wave equation with a temporal nonlocal term,, Dyn. Syst. Appl., 16 (2007), 665. Google Scholar

[14]

M. Medjden and N.-e. Tatar, Asymptotic behavior for a viscoelastic problem with not necessarily decreasing kernel,, Appl. Math. Comput., 167 (2005), 1221. doi: 10.1016/j.amc.2004.08.035. Google Scholar

[15]

S. Messaoudi, General decay of solutions of a viscoelastic equation,, J. Math. Anal. Appl., 341 (2008), 1457. doi: 10.1016/j.jmaa.2007.11.048. Google Scholar

[16]

S. Messaoudi and M. I. Mustafa, A general result in a memory-type Timoshenko system,, Comm. Pure Appl. Anal., (2013), 957. doi: 10.3934/cpaa.2013.12.957. Google Scholar

[17]

S. Messaoudi and B. Said-Houari, Uniform decay in a Timoshenko-type system with past history,, J. Math. Anal. Appl., 360 (2009), 459. doi: 10.1016/j.jmaa.2009.06.064. Google Scholar

[18]

J. E. Munoz Rivera and F. P. Quispe Gomez, Existence and decay in non linear viscoelasticity,, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 6 (2003), 1. Google Scholar

[19]

V. Pata, Exponential stability in linear viscoelasticity,, Quart. Appl. Math., LXIV (2006), 499. doi: 10.1090/S0033-569X-06-01010-4. Google Scholar

[20]

C. A. Rapaso, J. Ferreira, M. L. Santos and N. N. Castro, Exponential stabilization for the Timoshenko system with two weak dampings,, Appl. Math. Lett., 18 (2005), 535. doi: 10.1016/j.aml.2004.03.017. Google Scholar

[21]

J. E. M. Rivera and R. Racke, Mildly dissipative nonlinear Timoshenko systems: Global existence and exponential stability,, J. Math. Anal. Appl., 276 (2002), 248. doi: 10.1016/S0022-247X(02)00436-5. Google Scholar

[22]

J. E. M. Rivera and R. Racke, Global stability for damped Timoshenko systems,, Discrete Contin. Dyn. Syst., 9 (2003), 1625. doi: 10.3934/dcds.2003.9.1625. Google Scholar

[23]

D. H. Shi and D. X. Feng, Exponential decay of Timoshenko beam with locally distributed feedback,, IMA J. Math. Control Inform., 18 (2001), 395. doi: 10.1093/imamci/18.3.395. Google Scholar

[24]

D. H. Shi, S. H. Hou and D. X. Feng, Feedback stabilization of a Timoshenko beam with an end mass,, Int. J. Control, 69 (1998), 285. doi: 10.1080/002071798222848. Google Scholar

[25]

A. Soufyane and Wehbe, Uniform stabilization for the Timoshenko beam by a locally distributed damping,, Electron. J. Diff. Eqs., 29 (2003), 1. Google Scholar

[26]

N.-e. Tatar, Long time behavior for a viscoelastic problem with a positive definite kernel,, Australian J. Math. Anal. Appl., 1 (2004), 1. Google Scholar

[27]

N.-e. Tatar, Exponential decay for a viscoelastic problem with a singular problem,, Zeit. Angew. Math. Phys., 60 (2009), 640. doi: 10.1007/s00033-008-8030-1. Google Scholar

[28]

N.-e. Tatar, On a large class of kernels yielding exponential stability in viscoelasticity,, Appl. Math. Comp., 215 (2009), 2298. doi: 10.1016/j.amc.2009.08.034. Google Scholar

[29]

N.-e. Tatar, Viscoelastic Timoshenko beams with occasionally constant relaxation functions,, Appl. Math. Optim., 66 (2012), 123. doi: 10.1007/s00245-012-9167-z. Google Scholar

[30]

N.-e. Tatar, Exponential decay for a viscoelastically damped Timoshenko beam,, Acta Math. Sci. Ser. B Engl. Ed., 33 (2013), 505. doi: 10.1016/S0252-9602(13)60015-6. Google Scholar

[31]

N.-e. Tatar, Stabilization of a viscoelastic Timoshenko beam,, Appl. Anal.: An International Journal, 92 (2013), 27. doi: 10.1080/00036811.2011.587810. Google Scholar

[32]

J.-M. Wang, G.-Q. Xu and S.-P. Yung, Exponential stabilization of laminated beams with structural damping and boundary feedback controls,, SIAM J. Control Optim., 44 (2005), 1575. doi: 10.1137/040610003. Google Scholar

[33]

G. Q. Xu, Feedback exponential stabilization of a Timoshenko beam with both ends free,, Int. J. Control, 72 (2005), 286. doi: 10.1080/00207170500095148. Google Scholar

[34]

Q. Yan et al., Boundary stabilization of nonuniform Timoshenko beam with a tipload,, Chin. Ann. Math., 22 (2001), 485. doi: 10.1142/S0252959901000450. Google Scholar

show all references

References:
[1]

Ammar-Khodja, A. Benabdallah and J. E. M. Rivera, Energy decay for Timoshenko system of memory type,, J. Diff. Eqs., 194 (2003), 82. doi: 10.1016/S0022-0396(03)00185-2. Google Scholar

[2]

C. F. Beards and I. M. A. Imam, The damping of plate vibration by interfacial slip between layers,, Int. J. Mach. Tool. Des. Res., 18 (1978), 131. doi: 10.1016/0020-7357(78)90004-5. Google Scholar

[3]

X.-G. Cao, D.-Y. Liu and G.-Q. Xu, Easy test for stability of laminated beams with structural damping and boundary feedback controls,, J. Dynamical Control Syst., 13 (2007), 313. doi: 10.1007/s10883-007-9022-8. Google Scholar

[4]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. Ferreira, Existence and uniform decay for nonlinear viscoelastic equation with strong damping,, Math. Meth. Appl. Sci., 24 (2001), 1043. doi: 10.1002/mma.250. Google Scholar

[5]

M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. S. Prates Filho and J. A. Soriano, Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping,, Diff. Integral Eqs., 14 (2001), 85. Google Scholar

[6]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and P. Martinez, General decay rate estimates for viscoelastic dissipative systems,, Nonl. Anal.: T. M. A., 68 (2008), 177. doi: 10.1016/j.na.2006.10.040. Google Scholar

[7]

M. M. Cavalcanti and H. P. Oquendo, Frictional versus viscoelastic damping in a semilinear wave equation,, SIAM J. Control Optim., 42 (2003), 1310. doi: 10.1137/S0363012902408010. Google Scholar

[8]

M. De Lima Santos, Decay rates for solutions of a Timoshenko system with memory conditions at the boundary,, Abstr. Appl. Anal., 7 (2002), 53. doi: 10.1155/S1085337502204133. Google Scholar

[9]

X. S. Han and M. X. Wang, Global existence and uniform decay for a nonlinear viscoelastic equation with damping,, Nonl. Anal.: T. M. A., 70 (2009), 3090. doi: 10.1016/j.na.2008.04.011. Google Scholar

[10]

S. W. Hansen and R. Spies, Structural damping in a laminated beam due to interfacial slip,, J. Sound Vibration, 204 (1997), 183. doi: 10.1006/jsvi.1996.0913. Google Scholar

[11]

Z. Liu and C. Pang, Exponential stability of a viscoelastic Timoshenko beam,, Adv. Math. Sci. Appl., 8 (1998), 343. Google Scholar

[12]

A. Lo and N.-e. Tatar, Stabilization of a laminated beam with interfacial slip,, Electron. J. Diff. Eqs., 129 (2015), 1. Google Scholar

[13]

M. Medjden and N.-e. Tatar, On the wave equation with a temporal nonlocal term,, Dyn. Syst. Appl., 16 (2007), 665. Google Scholar

[14]

M. Medjden and N.-e. Tatar, Asymptotic behavior for a viscoelastic problem with not necessarily decreasing kernel,, Appl. Math. Comput., 167 (2005), 1221. doi: 10.1016/j.amc.2004.08.035. Google Scholar

[15]

S. Messaoudi, General decay of solutions of a viscoelastic equation,, J. Math. Anal. Appl., 341 (2008), 1457. doi: 10.1016/j.jmaa.2007.11.048. Google Scholar

[16]

S. Messaoudi and M. I. Mustafa, A general result in a memory-type Timoshenko system,, Comm. Pure Appl. Anal., (2013), 957. doi: 10.3934/cpaa.2013.12.957. Google Scholar

[17]

S. Messaoudi and B. Said-Houari, Uniform decay in a Timoshenko-type system with past history,, J. Math. Anal. Appl., 360 (2009), 459. doi: 10.1016/j.jmaa.2009.06.064. Google Scholar

[18]

J. E. Munoz Rivera and F. P. Quispe Gomez, Existence and decay in non linear viscoelasticity,, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 6 (2003), 1. Google Scholar

[19]

V. Pata, Exponential stability in linear viscoelasticity,, Quart. Appl. Math., LXIV (2006), 499. doi: 10.1090/S0033-569X-06-01010-4. Google Scholar

[20]

C. A. Rapaso, J. Ferreira, M. L. Santos and N. N. Castro, Exponential stabilization for the Timoshenko system with two weak dampings,, Appl. Math. Lett., 18 (2005), 535. doi: 10.1016/j.aml.2004.03.017. Google Scholar

[21]

J. E. M. Rivera and R. Racke, Mildly dissipative nonlinear Timoshenko systems: Global existence and exponential stability,, J. Math. Anal. Appl., 276 (2002), 248. doi: 10.1016/S0022-247X(02)00436-5. Google Scholar

[22]

J. E. M. Rivera and R. Racke, Global stability for damped Timoshenko systems,, Discrete Contin. Dyn. Syst., 9 (2003), 1625. doi: 10.3934/dcds.2003.9.1625. Google Scholar

[23]

D. H. Shi and D. X. Feng, Exponential decay of Timoshenko beam with locally distributed feedback,, IMA J. Math. Control Inform., 18 (2001), 395. doi: 10.1093/imamci/18.3.395. Google Scholar

[24]

D. H. Shi, S. H. Hou and D. X. Feng, Feedback stabilization of a Timoshenko beam with an end mass,, Int. J. Control, 69 (1998), 285. doi: 10.1080/002071798222848. Google Scholar

[25]

A. Soufyane and Wehbe, Uniform stabilization for the Timoshenko beam by a locally distributed damping,, Electron. J. Diff. Eqs., 29 (2003), 1. Google Scholar

[26]

N.-e. Tatar, Long time behavior for a viscoelastic problem with a positive definite kernel,, Australian J. Math. Anal. Appl., 1 (2004), 1. Google Scholar

[27]

N.-e. Tatar, Exponential decay for a viscoelastic problem with a singular problem,, Zeit. Angew. Math. Phys., 60 (2009), 640. doi: 10.1007/s00033-008-8030-1. Google Scholar

[28]

N.-e. Tatar, On a large class of kernels yielding exponential stability in viscoelasticity,, Appl. Math. Comp., 215 (2009), 2298. doi: 10.1016/j.amc.2009.08.034. Google Scholar

[29]

N.-e. Tatar, Viscoelastic Timoshenko beams with occasionally constant relaxation functions,, Appl. Math. Optim., 66 (2012), 123. doi: 10.1007/s00245-012-9167-z. Google Scholar

[30]

N.-e. Tatar, Exponential decay for a viscoelastically damped Timoshenko beam,, Acta Math. Sci. Ser. B Engl. Ed., 33 (2013), 505. doi: 10.1016/S0252-9602(13)60015-6. Google Scholar

[31]

N.-e. Tatar, Stabilization of a viscoelastic Timoshenko beam,, Appl. Anal.: An International Journal, 92 (2013), 27. doi: 10.1080/00036811.2011.587810. Google Scholar

[32]

J.-M. Wang, G.-Q. Xu and S.-P. Yung, Exponential stabilization of laminated beams with structural damping and boundary feedback controls,, SIAM J. Control Optim., 44 (2005), 1575. doi: 10.1137/040610003. Google Scholar

[33]

G. Q. Xu, Feedback exponential stabilization of a Timoshenko beam with both ends free,, Int. J. Control, 72 (2005), 286. doi: 10.1080/00207170500095148. Google Scholar

[34]

Q. Yan et al., Boundary stabilization of nonuniform Timoshenko beam with a tipload,, Chin. Ann. Math., 22 (2001), 485. doi: 10.1142/S0252959901000450. Google Scholar

[1]

Xiu-Fang Liu, Gen-Qi Xu. Exponential stabilization of Timoshenko beam with input and output delays. Mathematical Control & Related Fields, 2016, 6 (2) : 271-292. doi: 10.3934/mcrf.2016004

[2]

Gustavo Alberto Perla Menzala, Julian Moises Sejje Suárez. On the exponential stabilization of a thermo piezoelectric/piezomagnetic system. Evolution Equations & Control Theory, 2012, 1 (2) : 315-336. doi: 10.3934/eect.2012.1.315

[3]

Jeongho Ahn, David E. Stewart. A viscoelastic Timoshenko beam with dynamic frictionless impact. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 1-22. doi: 10.3934/dcdsb.2009.12.1

[4]

Serge Nicaise. Internal stabilization of a Mindlin-Timoshenko model by interior feedbacks. Mathematical Control & Related Fields, 2011, 1 (3) : 331-352. doi: 10.3934/mcrf.2011.1.331

[5]

Denis Mercier, Virginie Régnier. Decay rate of the Timoshenko system with one boundary damping. Evolution Equations & Control Theory, 2019, 8 (2) : 423-445. doi: 10.3934/eect.2019021

[6]

Belkacem Said-Houari, Radouane Rahali. Asymptotic behavior of the solution to the Cauchy problem for the Timoshenko system in thermoelasticity of type III. Evolution Equations & Control Theory, 2013, 2 (2) : 423-440. doi: 10.3934/eect.2013.2.423

[7]

Luci H. Fatori, Marcio A. Jorge Silva, Vando Narciso. Quasi-stability property and attractors for a semilinear Timoshenko system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6117-6132. doi: 10.3934/dcds.2016067

[8]

Salim A. Messaoudi, Muhammad I. Mustafa. A general stability result in a memory-type Timoshenko system. Communications on Pure & Applied Analysis, 2013, 12 (2) : 957-972. doi: 10.3934/cpaa.2013.12.957

[9]

Baowei Feng. On a semilinear Timoshenko-Coleman-Gurtin system: Quasi-stability and attractors. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4729-4751. doi: 10.3934/dcds.2017203

[10]

Liren Lin, I-Liang Chern. A kinetic energy reduction technique and characterizations of the ground states of spin-1 Bose-Einstein condensates. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1119-1128. doi: 10.3934/dcdsb.2014.19.1119

[11]

Yan-An Hwang, Yu-Hsien Liao. Reduction and dynamic approach for the multi-choice Shapley value. Journal of Industrial & Management Optimization, 2013, 9 (4) : 885-892. doi: 10.3934/jimo.2013.9.885

[12]

Heikki Haario, Leonid Kalachev, Marko Laine. Reduction and identification of dynamic models. Simple example: Generic receptor model. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 417-435. doi: 10.3934/dcdsb.2013.18.417

[13]

Ahmet Özkan Özer. Dynamic and electrostatic modeling for a piezoelectric smart composite and related stabilization results. Evolution Equations & Control Theory, 2018, 7 (4) : 639-668. doi: 10.3934/eect.2018031

[14]

Eduardo Cerpa, Emmanuelle Crépeau. Rapid exponential stabilization for a linear Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 655-668. doi: 10.3934/dcdsb.2009.11.655

[15]

Ionuţ Munteanu. Exponential stabilization of the stochastic Burgers equation by boundary proportional feedback. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2173-2185. doi: 10.3934/dcds.2019091

[16]

Mokhtar Kirane, Belkacem Said-Houari, Mohamed Naim Anwar. Stability result for the Timoshenko system with a time-varying delay term in the internal feedbacks. Communications on Pure & Applied Analysis, 2011, 10 (2) : 667-686. doi: 10.3934/cpaa.2011.10.667

[17]

Zhong-Jie Han, Gen-Qi Xu. Dynamical behavior of networks of non-uniform Timoshenko beams system with boundary time-delay inputs. Networks & Heterogeneous Media, 2011, 6 (2) : 297-327. doi: 10.3934/nhm.2011.6.297

[18]

Kaïs Ammari, Mohamed Jellouli, Michel Mehrenberger. Feedback stabilization of a coupled string-beam system. Networks & Heterogeneous Media, 2009, 4 (1) : 19-34. doi: 10.3934/nhm.2009.4.19

[19]

Lorena Bociu, Steven Derochers, Daniel Toundykov. Feedback stabilization of a linear hydro-elastic system. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1107-1132. doi: 10.3934/dcdsb.2018144

[20]

Louis Tebou. Simultaneous stabilization of a system of interacting plate and membrane. Evolution Equations & Control Theory, 2013, 2 (1) : 153-172. doi: 10.3934/eect.2013.2.153

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]