• Previous Article
    Positive and nodal solutions for parametric nonlinear Robin problems with indefinite potential
  • DCDS Home
  • This Issue
  • Next Article
    The Camassa-Holm equation as the long-wave limit of the improved Boussinesq equation and of a class of nonlocal wave equations
November  2016, 36(11): 6117-6132. doi: 10.3934/dcds.2016067

Quasi-stability property and attractors for a semilinear Timoshenko system

1. 

Department of Mathematics, State University of Londrina, Londrina PR, 86057-970, Brazil, Brazil

2. 

Center of exact sciences, State University of Mato Grosso do Sul, Dourados, 79804-970

Received  December 2015 Revised  February 2016 Published  August 2016

This paper is concerned with the classical Timoshenko system for vibrations of thin rods. It has been studied by many authors and most of known results are concerned with decay rates of the energy, controllability and numerical approximations. There are just a few references on the long-time dynamics of such systems. Motivated by this scenario we establish the existence of global and exponential attractors for a class of semilinear Timoshenko systems with linear frictional damping acting on the whole system and without assuming the well-known equal wave speeds condition.
Citation: Luci H. Fatori, Marcio A. Jorge Silva, Vando Narciso. Quasi-stability property and attractors for a semilinear Timoshenko system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6117-6132. doi: 10.3934/dcds.2016067
References:
[1]

F. Alabau-Boussouira, Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control,, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 643. doi: 10.1007/s00030-007-5033-0. Google Scholar

[2]

D. S. Almeida Júnior, J. E. Muñoz Rivera and M. L. Santos, The stability number of the Timoshenko system with second sound,, J. Differential Equations, 253 (2012), 2715. doi: 10.1016/j.jde.2012.07.012. Google Scholar

[3]

D. S. Almeida Júnior, J. E. Muñoz Rivera and M. L. Santos, Stability to weakly dissipative Timoshenko systems,, Math. Meth. Appl. Sci., 36 (2013), 1965. doi: 10.1002/mma.2741. Google Scholar

[4]

F. Ammar-Khodja, S. Kerbal and A. Soufyane, Stabilization of the nonuniform Timoshenko beam,, J. Math. Anal. Appl., 327 (2007), 525. doi: 10.1016/j.jmaa.2006.04.016. Google Scholar

[5]

F. Ammar-Khodja, A. Benabdallah, J. E. Muñoz Rivera and R. Racke, Energy decay for Timoshenko systems of memory type,, J. Differential Equations, 194 (2003), 82. doi: 10.1016/S0022-0396(03)00185-2. Google Scholar

[6]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations,, Studies in Mathematics and its Application 25, (1992). Google Scholar

[7]

M. M. Cavalcanti, V. N. Domingos Cavalcanti, F. A. Falcão Nascimento, I. Lasiecka and J. H. Rodrigues, Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping,, Z. Angew. Math. Phys., 65 (2014), 1189. doi: 10.1007/s00033-013-0380-7. Google Scholar

[8]

I. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping,, Mem. Amer. Math. Soc. 195, (2008). doi: 10.1090/memo/0912. Google Scholar

[9]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations. Well-Posedness and Long-Time Dynamics,, Springer Monographs in Mathematics, (2010). doi: 10.1007/978-0-387-87712-9. Google Scholar

[10]

F. Dell'Oro and V. Pata, On the stability of Timoshenko systems with Gurtin-Pipkin thermal law,, J. Differential Equations, 257 (2014), 523. doi: 10.1016/j.jde.2014.04.009. Google Scholar

[11]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations,, RAM: Research in Applied Mathematics, (1994). Google Scholar

[12]

D-X Feng and D-H Shi, Exponential decay of Timoshenko beam with locally distributed feedback,, IMA J. Math. Control Inform., 18 (2001), 395. doi: 10.1093/imamci/18.3.395. Google Scholar

[13]

L. H. Fatori, R. N. Monteiro and H. D. Fernández Sare, The Timoshenko system with history and Cattaneo law,, Appl. Math. Comput., 228 (2014), 128. doi: 10.1016/j.amc.2013.11.054. Google Scholar

[14]

L. H. Fatori, R. N. Monteiro and J. E. Muñoz Rivera, Energy decay to Timoshenko's system with thermoelasticity of type III,, Asymptot. Anal., 86 (2014), 227. Google Scholar

[15]

H. D. Fernández Sare and R. Racke, On the stability of damped Timoshenko systems: Cattaneo versus Fourier law,, Arch. Ration. Mech. Anal., 194 (2009), 221. doi: 10.1007/s00205-009-0220-2. Google Scholar

[16]

M. Grasselli, V. Pata and G. Prouse, Longtime behavior of a viscoelastic Timoshenko beam,, Discrete Contin. Dyn. Syst., 10 (2004), 337. doi: 10.3934/dcds.2004.10.337. Google Scholar

[17]

A. Guesmia and S. A. Messaoudi, A general stability result in a Timoshenko system with infinite memory: a new approach,, Math. Methods Appl. Sci., 37 (2014), 384. doi: 10.1002/mma.2797. Google Scholar

[18]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Mathematical Surveys and Monographs, (1988). Google Scholar

[19]

M. A. Jorge Silva and V. Narciso, Attractors and their properties for a class of nonlocal extensible beams,, Discrete Contin. Dyn. Syst., 35 (2015), 985. doi: 10.3934/dcds.2015.35.985. Google Scholar

[20]

J. U. Kim and Y. Renardy, Boundary control of the Timoshenko beam,, SIAM J. Control Optim., 25 (1987), 1417. doi: 10.1137/0325078. Google Scholar

[21]

J. E. Muñoz Rivera and R. Racke, Mildly dissipative nonlinear Timoshenko systems-global existence and exponential stability,, J. Math. Anal. Appl., 276 (2002), 248. doi: 10.1016/S0022-247X(02)00436-5. Google Scholar

[22]

J. E. Muñoz Rivera and R. Racke, Global stability for damped Timoshenko systems,, Discrete Contin. Dyn. Syst., 9 (2003), 1625. doi: 10.3934/dcds.2003.9.1625. Google Scholar

[23]

J. E. Muñoz Rivera and R. Racke, Timoshenko systems with indefinite damping,, J. Math. Anal. Appl., 341 (2008), 1068. doi: 10.1016/j.jmaa.2007.11.012. Google Scholar

[24]

P. Olsson and G. Kristensson, Wave splitting of the Timoshenko beam equation in the time domain,, Z. Angew. Math. Phys., 45 (1994), 866. doi: 10.1007/BF00952082. Google Scholar

[25]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Applied Mathematical Sciences 44, (1983). doi: 10.1007/978-1-4612-5561-1. Google Scholar

[26]

M. Potomkin, Asymptotic behavior of thermoviscoelastic Berger plate,, Commun. Pure Appl. Anal., 9 (2010), 161. doi: 10.3934/cpaa.2010.9.161. Google Scholar

[27]

C. A. Raposo, J. Ferreira, M. L. Santos and N. N. O. Castro, Exponential stability for the Timoshenko system with two weak dampings,, Appl. Math. Lett., 18 (2005), 535. doi: 10.1016/j.aml.2004.03.017. Google Scholar

[28]

D. H. Shi and D. X. Feng, Exponential decay of Timoshenko beam with locally distributed feedback,, in Proceeding of the IFAC World Congress, (1999). doi: 10.1093/imamci/18.3.395. Google Scholar

[29]

A. Soufyane, Stabilisation de la poutre de Timoshenko,, C. R. Acad. Sci. Paris, 328 (1999), 731. doi: 10.1016/S0764-4442(99)80244-4. Google Scholar

[30]

A. Soufyane, Exponential stability of the linearized nonuniform Timoshenko beam,, Nonlinear Anal. Real World Appl., 10 (2009), 1016. doi: 10.1016/j.nonrwa.2007.11.019. Google Scholar

[31]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Applied Mathematical Sciences 68. Springer-Verlag, (1988). doi: 10.1007/978-1-4684-0313-8. Google Scholar

[32]

S. P. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismatic bars,, Philosophical Magazine, 41 (1921), 744. doi: 10.1080/14786442108636264. Google Scholar

[33]

S. P. Timoshenko, Vibration Problems in Engineering,, Van Nostrand, (1955). Google Scholar

show all references

References:
[1]

F. Alabau-Boussouira, Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control,, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 643. doi: 10.1007/s00030-007-5033-0. Google Scholar

[2]

D. S. Almeida Júnior, J. E. Muñoz Rivera and M. L. Santos, The stability number of the Timoshenko system with second sound,, J. Differential Equations, 253 (2012), 2715. doi: 10.1016/j.jde.2012.07.012. Google Scholar

[3]

D. S. Almeida Júnior, J. E. Muñoz Rivera and M. L. Santos, Stability to weakly dissipative Timoshenko systems,, Math. Meth. Appl. Sci., 36 (2013), 1965. doi: 10.1002/mma.2741. Google Scholar

[4]

F. Ammar-Khodja, S. Kerbal and A. Soufyane, Stabilization of the nonuniform Timoshenko beam,, J. Math. Anal. Appl., 327 (2007), 525. doi: 10.1016/j.jmaa.2006.04.016. Google Scholar

[5]

F. Ammar-Khodja, A. Benabdallah, J. E. Muñoz Rivera and R. Racke, Energy decay for Timoshenko systems of memory type,, J. Differential Equations, 194 (2003), 82. doi: 10.1016/S0022-0396(03)00185-2. Google Scholar

[6]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations,, Studies in Mathematics and its Application 25, (1992). Google Scholar

[7]

M. M. Cavalcanti, V. N. Domingos Cavalcanti, F. A. Falcão Nascimento, I. Lasiecka and J. H. Rodrigues, Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping,, Z. Angew. Math. Phys., 65 (2014), 1189. doi: 10.1007/s00033-013-0380-7. Google Scholar

[8]

I. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping,, Mem. Amer. Math. Soc. 195, (2008). doi: 10.1090/memo/0912. Google Scholar

[9]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations. Well-Posedness and Long-Time Dynamics,, Springer Monographs in Mathematics, (2010). doi: 10.1007/978-0-387-87712-9. Google Scholar

[10]

F. Dell'Oro and V. Pata, On the stability of Timoshenko systems with Gurtin-Pipkin thermal law,, J. Differential Equations, 257 (2014), 523. doi: 10.1016/j.jde.2014.04.009. Google Scholar

[11]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations,, RAM: Research in Applied Mathematics, (1994). Google Scholar

[12]

D-X Feng and D-H Shi, Exponential decay of Timoshenko beam with locally distributed feedback,, IMA J. Math. Control Inform., 18 (2001), 395. doi: 10.1093/imamci/18.3.395. Google Scholar

[13]

L. H. Fatori, R. N. Monteiro and H. D. Fernández Sare, The Timoshenko system with history and Cattaneo law,, Appl. Math. Comput., 228 (2014), 128. doi: 10.1016/j.amc.2013.11.054. Google Scholar

[14]

L. H. Fatori, R. N. Monteiro and J. E. Muñoz Rivera, Energy decay to Timoshenko's system with thermoelasticity of type III,, Asymptot. Anal., 86 (2014), 227. Google Scholar

[15]

H. D. Fernández Sare and R. Racke, On the stability of damped Timoshenko systems: Cattaneo versus Fourier law,, Arch. Ration. Mech. Anal., 194 (2009), 221. doi: 10.1007/s00205-009-0220-2. Google Scholar

[16]

M. Grasselli, V. Pata and G. Prouse, Longtime behavior of a viscoelastic Timoshenko beam,, Discrete Contin. Dyn. Syst., 10 (2004), 337. doi: 10.3934/dcds.2004.10.337. Google Scholar

[17]

A. Guesmia and S. A. Messaoudi, A general stability result in a Timoshenko system with infinite memory: a new approach,, Math. Methods Appl. Sci., 37 (2014), 384. doi: 10.1002/mma.2797. Google Scholar

[18]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Mathematical Surveys and Monographs, (1988). Google Scholar

[19]

M. A. Jorge Silva and V. Narciso, Attractors and their properties for a class of nonlocal extensible beams,, Discrete Contin. Dyn. Syst., 35 (2015), 985. doi: 10.3934/dcds.2015.35.985. Google Scholar

[20]

J. U. Kim and Y. Renardy, Boundary control of the Timoshenko beam,, SIAM J. Control Optim., 25 (1987), 1417. doi: 10.1137/0325078. Google Scholar

[21]

J. E. Muñoz Rivera and R. Racke, Mildly dissipative nonlinear Timoshenko systems-global existence and exponential stability,, J. Math. Anal. Appl., 276 (2002), 248. doi: 10.1016/S0022-247X(02)00436-5. Google Scholar

[22]

J. E. Muñoz Rivera and R. Racke, Global stability for damped Timoshenko systems,, Discrete Contin. Dyn. Syst., 9 (2003), 1625. doi: 10.3934/dcds.2003.9.1625. Google Scholar

[23]

J. E. Muñoz Rivera and R. Racke, Timoshenko systems with indefinite damping,, J. Math. Anal. Appl., 341 (2008), 1068. doi: 10.1016/j.jmaa.2007.11.012. Google Scholar

[24]

P. Olsson and G. Kristensson, Wave splitting of the Timoshenko beam equation in the time domain,, Z. Angew. Math. Phys., 45 (1994), 866. doi: 10.1007/BF00952082. Google Scholar

[25]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Applied Mathematical Sciences 44, (1983). doi: 10.1007/978-1-4612-5561-1. Google Scholar

[26]

M. Potomkin, Asymptotic behavior of thermoviscoelastic Berger plate,, Commun. Pure Appl. Anal., 9 (2010), 161. doi: 10.3934/cpaa.2010.9.161. Google Scholar

[27]

C. A. Raposo, J. Ferreira, M. L. Santos and N. N. O. Castro, Exponential stability for the Timoshenko system with two weak dampings,, Appl. Math. Lett., 18 (2005), 535. doi: 10.1016/j.aml.2004.03.017. Google Scholar

[28]

D. H. Shi and D. X. Feng, Exponential decay of Timoshenko beam with locally distributed feedback,, in Proceeding of the IFAC World Congress, (1999). doi: 10.1093/imamci/18.3.395. Google Scholar

[29]

A. Soufyane, Stabilisation de la poutre de Timoshenko,, C. R. Acad. Sci. Paris, 328 (1999), 731. doi: 10.1016/S0764-4442(99)80244-4. Google Scholar

[30]

A. Soufyane, Exponential stability of the linearized nonuniform Timoshenko beam,, Nonlinear Anal. Real World Appl., 10 (2009), 1016. doi: 10.1016/j.nonrwa.2007.11.019. Google Scholar

[31]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Applied Mathematical Sciences 68. Springer-Verlag, (1988). doi: 10.1007/978-1-4684-0313-8. Google Scholar

[32]

S. P. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismatic bars,, Philosophical Magazine, 41 (1921), 744. doi: 10.1080/14786442108636264. Google Scholar

[33]

S. P. Timoshenko, Vibration Problems in Engineering,, Van Nostrand, (1955). Google Scholar

[1]

Moncef Aouadi, Alain Miranville. Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory. Evolution Equations & Control Theory, 2015, 4 (3) : 241-263. doi: 10.3934/eect.2015.4.241

[2]

Francesca Bucci, Igor Chueshov. Long-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 557-586. doi: 10.3934/dcds.2008.22.557

[3]

Irena Lasiecka, To Fu Ma, Rodrigo Nunes Monteiro. Long-time dynamics of vectorial von Karman system with nonlinear thermal effects and free boundary conditions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1037-1072. doi: 10.3934/dcdsb.2018141

[4]

Baowei Feng. On a semilinear Timoshenko-Coleman-Gurtin system: Quasi-stability and attractors. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4729-4751. doi: 10.3934/dcds.2017203

[5]

Elena Bonetti, Elisabetta Rocca. Global existence and long-time behaviour for a singular integro-differential phase-field system. Communications on Pure & Applied Analysis, 2007, 6 (2) : 367-387. doi: 10.3934/cpaa.2007.6.367

[6]

Marcio Antonio Jorge da Silva, Vando Narciso. Long-time dynamics for a class of extensible beams with nonlocal nonlinear damping*. Evolution Equations & Control Theory, 2017, 6 (3) : 437-470. doi: 10.3934/eect.2017023

[7]

Igor Chueshov, Stanislav Kolbasin. Long-time dynamics in plate models with strong nonlinear damping. Communications on Pure & Applied Analysis, 2012, 11 (2) : 659-674. doi: 10.3934/cpaa.2012.11.659

[8]

Pelin G. Geredeli, Azer Khanmamedov. Long-time dynamics of the parabolic $p$-Laplacian equation. Communications on Pure & Applied Analysis, 2013, 12 (2) : 735-754. doi: 10.3934/cpaa.2013.12.735

[9]

Tristan Roget. On the long-time behaviour of age and trait structured population dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2551-2576. doi: 10.3934/dcdsb.2018265

[10]

Amjad Khan, Dmitry E. Pelinovsky. Long-time stability of small FPU solitary waves. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2065-2075. doi: 10.3934/dcds.2017088

[11]

C. I. Christov, M. D. Todorov. Investigation of the long-time evolution of localized solutions of a dispersive wave system. Conference Publications, 2013, 2013 (special) : 139-148. doi: 10.3934/proc.2013.2013.139

[12]

Marilena N. Poulou, Nikolaos M. Stavrakakis. Global attractor for a Klein-Gordon-Schrodinger type system. Conference Publications, 2007, 2007 (Special) : 844-854. doi: 10.3934/proc.2007.2007.844

[13]

Francesca Bucci, Igor Chueshov, Irena Lasiecka. Global attractor for a composite system of nonlinear wave and plate equations. Communications on Pure & Applied Analysis, 2007, 6 (1) : 113-140. doi: 10.3934/cpaa.2007.6.113

[14]

Olivier Goubet, Manal Hussein. Global attractor for the Davey-Stewartson system on $\mathbb R^2$. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1555-1575. doi: 10.3934/cpaa.2009.8.1555

[15]

Vladimir V. Chepyzhov, Mark I. Vishik. Trajectory attractor for reaction-diffusion system with diffusion coefficient vanishing in time. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1493-1509. doi: 10.3934/dcds.2010.27.1493

[16]

J.E. Muñoz Rivera, Reinhard Racke. Global stability for damped Timoshenko systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1625-1639. doi: 10.3934/dcds.2003.9.1625

[17]

Dalibor Pražák. Exponential attractor for the delayed logistic equation with a nonlinear diffusion. Conference Publications, 2003, 2003 (Special) : 717-726. doi: 10.3934/proc.2003.2003.717

[18]

Messoud Efendiev, Anna Zhigun. On an exponential attractor for a class of PDEs with degenerate diffusion and chemotaxis. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 651-673. doi: 10.3934/dcds.2018028

[19]

Andrea Giorgini. On the Swift-Hohenberg equation with slow and fast dynamics: well-posedness and long-time behavior. Communications on Pure & Applied Analysis, 2016, 15 (1) : 219-241. doi: 10.3934/cpaa.2016.15.219

[20]

Xinguang Yang, Baowei Feng, Thales Maier de Souza, Taige Wang. Long-time dynamics for a non-autonomous Navier-Stokes-Voigt equation in Lipschitz domains. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 363-386. doi: 10.3934/dcdsb.2018084

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (4)

[Back to Top]