November  2016, 36(11): 6101-6116. doi: 10.3934/dcds.2016066

The Camassa-Holm equation as the long-wave limit of the improved Boussinesq equation and of a class of nonlocal wave equations

1. 

Department of Natural and Mathematical Sciences, Faculty of Engineering, Ozyegin University, Cekmekoy 34794, Istanbul, Turkey, Turkey

2. 

Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34956, Istanbul, Turkey

Received  November 2015 Revised  December 2015 Published  August 2016

In the present study we prove rigorously that in the long-wave limit, the unidirectional solutions of a class of nonlocal wave equations to which the improved Boussinesq equation belongs are well approximated by the solutions of the Camassa-Holm equation over a long time scale. This general class of nonlocal wave equations model bidirectional wave propagation in a nonlocally and nonlinearly elastic medium whose constitutive equation is given by a convolution integral. To justify the Camassa-Holm approximation we show that approximation errors remain small over a long time interval. To be more precise, we obtain error estimates in terms of two independent, small, positive parameters $\epsilon$ and $\delta$ measuring the effect of nonlinearity and dispersion, respectively. We further show that similar conclusions are also valid for the lower order approximations: the Benjamin-Bona-Mahony approximation and the Korteweg-de Vries approximation.
Citation: H. A. Erbay, S. Erbay, A. Erkip. The Camassa-Holm equation as the long-wave limit of the improved Boussinesq equation and of a class of nonlocal wave equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6101-6116. doi: 10.3934/dcds.2016066
References:
[1]

A. A. Alazman, J. P. Albert, J. L. Bona, M. Chen and J. Wu, Comparisons between the BBM equation and a Boussinesq system,, Advances in Differential Equations, 11 (2006), 121. Google Scholar

[2]

T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems,, Philos. Trans. R. Soc. Lond. Ser. A: Math. Phys. Sci., 272 (1972), 47. doi: 10.1098/rsta.1972.0032. Google Scholar

[3]

J. L. Bona, T. Colin and D. Lannes, Long wave approximations for water waves,, Arch. Rational Mech. Anal., 178 (2005), 373. doi: 10.1007/s00205-005-0378-1. Google Scholar

[4]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661. doi: 10.1103/PhysRevLett.71.1661. Google Scholar

[5]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Mathematica, 181 (1998), 229. doi: 10.1007/BF02392586. Google Scholar

[6]

A. Constantin, On the scattering problem for the Camassa-Holm equation,, Proc. R. Soc. Lond. A, 457 (2001), 953. doi: 10.1098/rspa.2000.0701. Google Scholar

[7]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Rational Mech. Anal., 192 (2009), 165. doi: 10.1007/s00205-008-0128-2. Google Scholar

[8]

A. Constantin and L. Molinet, The initial value problem for a generalized Boussinesq equation,, Differential and Integral Equations, 15 (2002), 1061. Google Scholar

[9]

N. Duruk, A. Erkip and H. A. Erbay, A higher-order Boussinesq equation in locally nonlinear theory of one-dimensional nonlocal elasticity,, IMA J. Appl. Math., 74 (2009), 97. doi: 10.1093/imamat/hxn020. Google Scholar

[10]

N. Duruk, H.A. Erbay and A. Erkip, Global existence and blow-up for a class of nonlocal nonlinear Cauchy problems arising in elasticity,, Nonlinearity, 23 (2010), 107. doi: 10.1088/0951-7715/23/1/006. Google Scholar

[11]

H. A. Erbay, S. Erbay and A. Erkip, Derivation of the Camassa-Holm equations for elastic waves,, Physics Letters A, 379 (2015), 956. doi: 10.1016/j.physleta.2015.01.031. Google Scholar

[12]

H. A. Erbay, S. Erbay and A. Erkip, Unidirectional wave motion in a nonlocally and nonlinearly elastic medium: The KdV, BBM and CH equations,, Proceedings of the Estonian Academy of Sciences, 64 (2015), 256. doi: 10.3176/proc.2015.3.08. Google Scholar

[13]

T. Gallay and G. Schneider, KP description of unidirectional long waves. The model case,, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 885. doi: 10.1017/S0308210500001165. Google Scholar

[14]

D. Ionescu-Kruse, Variational derivation of the Camassa-Holm shallow water equation,, J. Non-linear Math. Phys., 14 (2007), 303. doi: 10.2991/jnmp.2007.14.3.1. Google Scholar

[15]

R. S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves,, J. Fluid Mech., 455 (2002), 63. doi: 10.1017/S0022112001007224. Google Scholar

[16]

D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular channel, and on a new type of long stationary waves,, Phil. Mag., 39 (1895), 422. Google Scholar

[17]

D. Lannes, The Water Waves Problem: Mathematical Analysis and Asymptotics,, AMS Mathematical Surveys and Monographs, (2013). doi: 10.1090/surv/188. Google Scholar

[18]

G. Schneider, The long wave limit for a Boussinesq equation,, SIAM J. Appl. Math., 58 (1998), 1237. doi: 10.1137/S0036139995287946. Google Scholar

show all references

References:
[1]

A. A. Alazman, J. P. Albert, J. L. Bona, M. Chen and J. Wu, Comparisons between the BBM equation and a Boussinesq system,, Advances in Differential Equations, 11 (2006), 121. Google Scholar

[2]

T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems,, Philos. Trans. R. Soc. Lond. Ser. A: Math. Phys. Sci., 272 (1972), 47. doi: 10.1098/rsta.1972.0032. Google Scholar

[3]

J. L. Bona, T. Colin and D. Lannes, Long wave approximations for water waves,, Arch. Rational Mech. Anal., 178 (2005), 373. doi: 10.1007/s00205-005-0378-1. Google Scholar

[4]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661. doi: 10.1103/PhysRevLett.71.1661. Google Scholar

[5]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Mathematica, 181 (1998), 229. doi: 10.1007/BF02392586. Google Scholar

[6]

A. Constantin, On the scattering problem for the Camassa-Holm equation,, Proc. R. Soc. Lond. A, 457 (2001), 953. doi: 10.1098/rspa.2000.0701. Google Scholar

[7]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Rational Mech. Anal., 192 (2009), 165. doi: 10.1007/s00205-008-0128-2. Google Scholar

[8]

A. Constantin and L. Molinet, The initial value problem for a generalized Boussinesq equation,, Differential and Integral Equations, 15 (2002), 1061. Google Scholar

[9]

N. Duruk, A. Erkip and H. A. Erbay, A higher-order Boussinesq equation in locally nonlinear theory of one-dimensional nonlocal elasticity,, IMA J. Appl. Math., 74 (2009), 97. doi: 10.1093/imamat/hxn020. Google Scholar

[10]

N. Duruk, H.A. Erbay and A. Erkip, Global existence and blow-up for a class of nonlocal nonlinear Cauchy problems arising in elasticity,, Nonlinearity, 23 (2010), 107. doi: 10.1088/0951-7715/23/1/006. Google Scholar

[11]

H. A. Erbay, S. Erbay and A. Erkip, Derivation of the Camassa-Holm equations for elastic waves,, Physics Letters A, 379 (2015), 956. doi: 10.1016/j.physleta.2015.01.031. Google Scholar

[12]

H. A. Erbay, S. Erbay and A. Erkip, Unidirectional wave motion in a nonlocally and nonlinearly elastic medium: The KdV, BBM and CH equations,, Proceedings of the Estonian Academy of Sciences, 64 (2015), 256. doi: 10.3176/proc.2015.3.08. Google Scholar

[13]

T. Gallay and G. Schneider, KP description of unidirectional long waves. The model case,, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 885. doi: 10.1017/S0308210500001165. Google Scholar

[14]

D. Ionescu-Kruse, Variational derivation of the Camassa-Holm shallow water equation,, J. Non-linear Math. Phys., 14 (2007), 303. doi: 10.2991/jnmp.2007.14.3.1. Google Scholar

[15]

R. S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves,, J. Fluid Mech., 455 (2002), 63. doi: 10.1017/S0022112001007224. Google Scholar

[16]

D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular channel, and on a new type of long stationary waves,, Phil. Mag., 39 (1895), 422. Google Scholar

[17]

D. Lannes, The Water Waves Problem: Mathematical Analysis and Asymptotics,, AMS Mathematical Surveys and Monographs, (2013). doi: 10.1090/surv/188. Google Scholar

[18]

G. Schneider, The long wave limit for a Boussinesq equation,, SIAM J. Appl. Math., 58 (1998), 1237. doi: 10.1137/S0036139995287946. Google Scholar

[1]

H. A. Erbay, S. Erbay, A. Erkip. On the decoupling of the improved Boussinesq equation into two uncoupled Camassa-Holm equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3111-3122. doi: 10.3934/dcds.2017133

[2]

Yongsheng Mi, Boling Guo, Chunlai Mu. On an $N$-Component Camassa-Holm equation with peakons. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1575-1601. doi: 10.3934/dcds.2017065

[3]

Helge Holden, Xavier Raynaud. Dissipative solutions for the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1047-1112. doi: 10.3934/dcds.2009.24.1047

[4]

Zhenhua Guo, Mina Jiang, Zhian Wang, Gao-Feng Zheng. Global weak solutions to the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 883-906. doi: 10.3934/dcds.2008.21.883

[5]

Milena Stanislavova, Atanas Stefanov. Attractors for the viscous Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 159-186. doi: 10.3934/dcds.2007.18.159

[6]

Defu Chen, Yongsheng Li, Wei Yan. On the Cauchy problem for a generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 871-889. doi: 10.3934/dcds.2015.35.871

[7]

Yu Gao, Jian-Guo Liu. The modified Camassa-Holm equation in Lagrangian coordinates. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2545-2592. doi: 10.3934/dcdsb.2018067

[8]

Stephen C. Anco, Elena Recio, María L. Gandarias, María S. Bruzón. A nonlinear generalization of the Camassa-Holm equation with peakon solutions. Conference Publications, 2015, 2015 (special) : 29-37. doi: 10.3934/proc.2015.0029

[9]

Li Yang, Zeng Rong, Shouming Zhou, Chunlai Mu. Uniqueness of conservative solutions to the generalized Camassa-Holm equation via characteristics. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5205-5220. doi: 10.3934/dcds.2018230

[10]

Yongsheng Mi, Chunlai Mu. On a three-Component Camassa-Holm equation with peakons. Kinetic & Related Models, 2014, 7 (2) : 305-339. doi: 10.3934/krm.2014.7.305

[11]

Shouming Zhou, Chunlai Mu. Global conservative and dissipative solutions of the generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1713-1739. doi: 10.3934/dcds.2013.33.1713

[12]

Shihui Zhu. Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5201-5221. doi: 10.3934/dcds.2016026

[13]

Feng Wang, Fengquan Li, Zhijun Qiao. On the Cauchy problem for a higher-order μ-Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4163-4187. doi: 10.3934/dcds.2018181

[14]

Danping Ding, Lixin Tian, Gang Xu. The study on solutions to Camassa-Holm equation with weak dissipation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 483-492. doi: 10.3934/cpaa.2006.5.483

[15]

Priscila Leal da Silva, Igor Leite Freire. An equation unifying both Camassa-Holm and Novikov equations. Conference Publications, 2015, 2015 (special) : 304-311. doi: 10.3934/proc.2015.0304

[16]

Stephen Anco, Daniel Kraus. Hamiltonian structure of peakons as weak solutions for the modified Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4449-4465. doi: 10.3934/dcds.2018194

[17]

David F. Parker. Higher-order shallow water equations and the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 629-641. doi: 10.3934/dcdsb.2007.7.629

[18]

Shaoyong Lai, Qichang Xie, Yunxi Guo, YongHong Wu. The existence of weak solutions for a generalized Camassa-Holm equation. Communications on Pure & Applied Analysis, 2011, 10 (1) : 45-57. doi: 10.3934/cpaa.2011.10.45

[19]

Alberto Bressan, Geng Chen, Qingtian Zhang. Uniqueness of conservative solutions to the Camassa-Holm equation via characteristics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 25-42. doi: 10.3934/dcds.2015.35.25

[20]

Jae Min Lee, Stephen C. Preston. Local well-posedness of the Camassa-Holm equation on the real line. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3285-3299. doi: 10.3934/dcds.2017139

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]