• Previous Article
    The Camassa-Holm equation as the long-wave limit of the improved Boussinesq equation and of a class of nonlocal wave equations
  • DCDS Home
  • This Issue
  • Next Article
    Second-order variational problems on Lie groupoids and optimal control applications
November  2016, 36(11): 6065-6099. doi: 10.3934/dcds.2016065

Differential geometry of rigid bodies collisions and non-standard billiards

1. 

Washington University, Department of Mathematics, One Brookings Dr., Campus Box 1146, St. Louis, MO 63130, United States, United States

Received  October 2015 Revised  June 2016 Published  August 2016

The configuration manifold $M$ of a mechanical system consisting of two unconstrained rigid bodies in $\mathbb{R}^n$ is a manifold with boundary (typically with singularities.) A full description of the system requires boundary conditions specifying how orbits should be continued after collisions, that is, the assignment of a collision map at each tangent space on the boundary of $M$ giving the post-collision state of the system for each pre-collision state. We give a complete description of the space of linear collision maps satisfying energy and (linear and angular) momentum conservation, time reversibility, and the natural requirement that impulse forces only act at the point of contact of the colliding bodies. These assumptions are stated geometrically in terms of a family of vector subbundles of the tangent bundle to $\partial M$: the diagonal, non-slipping, and impulse subbundles. Collision maps are shown to be the isometric involutions that restrict to the identity on the non-slipping subspace. We then make a few observations of a dynamical nature about non-standard billiard systems, among which is a sufficient condition for the billiard map on the space of boundary states to preserve the canonical measure on constant energy hypersurfaces.
Citation: Christopher Cox, Renato Feres. Differential geometry of rigid bodies collisions and non-standard billiards. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6065-6099. doi: 10.3934/dcds.2016065
References:
[1]

V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits,, Annales de l'institue Fourier, n1 (1966), 319. doi: 10.5802/aif.233. Google Scholar

[2]

A. M. Bloch, Nonholonomic Mechanics and Control,, Springer, (2003). doi: 10.1007/b97376. Google Scholar

[3]

D. S. Broomhead and E. Gutkin, The dynamics of billiards with no-slip collisions,, Physica D, 67 (1993), 188. doi: 10.1016/0167-2789(93)90205-F. Google Scholar

[4]

M. do Carmo, Riemannian Geometry,, Birkhäuser, (1993). doi: 10.1007/978-1-4757-2201-7. Google Scholar

[5]

B, Chen, L.-S. Wang, S.-S. Chu and W.-T. Chou, A new classification of nonholonomic constraints,, Proc. R. Soc. Lond. A, 453 (1997), 631. doi: 10.1098/rspa.1997.0035. Google Scholar

[6]

N. Chernov, R. Markarian, Chaotic billiards, Mathematical Surveys and Monographs,, V. 127, (2006). doi: 10.1090/surv/127. Google Scholar

[7]

S. Cook and R. Feres, Random billiards with wall temperature and associated Markov chains,, Nonlinearity, 25 (2012), 2503. doi: 10.1088/0951-7715/25/9/2503. Google Scholar

[8]

J. Cortés, M. de León, D. M. de Diego and S. Martínez, Mechanical systems subjected to generalized nonholonomic constraints,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 651. doi: 10.1098/rspa.2000.0686. Google Scholar

[9]

J. Cortés and A. M. Vinogradov, Hamiltonian theory of constrained impulse,, J. Math. Phy., 47 (2006), 1. doi: 10.1063/1.2192974. Google Scholar

[10]

C. Cox and R. Feres, {No-slip billiards in dimension two,, (2016); , (2016). Google Scholar

[11]

W. Goldsmith, Impact: The Theory and Physical Behaviour of Colliding Solids,, Dover, (2001). Google Scholar

[12]

A. Ibort, M. de León, E. A. Lacomba, J. C. Marrero, D. M. de Diego and P. Pitanga, Geometric formulation of Carnot's theorem,, J. Phys. A: Math. Gen., 34 (2001), 1691. doi: 10.1088/0305-4470/34/8/314. Google Scholar

[13]

E. A. Lacomba and W. A. Tulczyjew, Geometric formulation of mechanical systems with one-sided constraints,, J. Phys. A: Math. Gen., 23 (1990), 2801. doi: 10.1088/0305-4470/23/13/019. Google Scholar

[14]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry,, Springer 1999., (1999). doi: 10.1007/978-0-387-21792-5. Google Scholar

[15]

S. Tabachnikov, Billiards,, Panoramas et Synthèses 1, (1995). Google Scholar

[16]

M. Wojtkowski, The system of two spinning disks in the torus,, Physica D, 71 (1994), 430. doi: 10.1016/0167-2789(94)90009-4. Google Scholar

show all references

References:
[1]

V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits,, Annales de l'institue Fourier, n1 (1966), 319. doi: 10.5802/aif.233. Google Scholar

[2]

A. M. Bloch, Nonholonomic Mechanics and Control,, Springer, (2003). doi: 10.1007/b97376. Google Scholar

[3]

D. S. Broomhead and E. Gutkin, The dynamics of billiards with no-slip collisions,, Physica D, 67 (1993), 188. doi: 10.1016/0167-2789(93)90205-F. Google Scholar

[4]

M. do Carmo, Riemannian Geometry,, Birkhäuser, (1993). doi: 10.1007/978-1-4757-2201-7. Google Scholar

[5]

B, Chen, L.-S. Wang, S.-S. Chu and W.-T. Chou, A new classification of nonholonomic constraints,, Proc. R. Soc. Lond. A, 453 (1997), 631. doi: 10.1098/rspa.1997.0035. Google Scholar

[6]

N. Chernov, R. Markarian, Chaotic billiards, Mathematical Surveys and Monographs,, V. 127, (2006). doi: 10.1090/surv/127. Google Scholar

[7]

S. Cook and R. Feres, Random billiards with wall temperature and associated Markov chains,, Nonlinearity, 25 (2012), 2503. doi: 10.1088/0951-7715/25/9/2503. Google Scholar

[8]

J. Cortés, M. de León, D. M. de Diego and S. Martínez, Mechanical systems subjected to generalized nonholonomic constraints,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 651. doi: 10.1098/rspa.2000.0686. Google Scholar

[9]

J. Cortés and A. M. Vinogradov, Hamiltonian theory of constrained impulse,, J. Math. Phy., 47 (2006), 1. doi: 10.1063/1.2192974. Google Scholar

[10]

C. Cox and R. Feres, {No-slip billiards in dimension two,, (2016); , (2016). Google Scholar

[11]

W. Goldsmith, Impact: The Theory and Physical Behaviour of Colliding Solids,, Dover, (2001). Google Scholar

[12]

A. Ibort, M. de León, E. A. Lacomba, J. C. Marrero, D. M. de Diego and P. Pitanga, Geometric formulation of Carnot's theorem,, J. Phys. A: Math. Gen., 34 (2001), 1691. doi: 10.1088/0305-4470/34/8/314. Google Scholar

[13]

E. A. Lacomba and W. A. Tulczyjew, Geometric formulation of mechanical systems with one-sided constraints,, J. Phys. A: Math. Gen., 23 (1990), 2801. doi: 10.1088/0305-4470/23/13/019. Google Scholar

[14]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry,, Springer 1999., (1999). doi: 10.1007/978-0-387-21792-5. Google Scholar

[15]

S. Tabachnikov, Billiards,, Panoramas et Synthèses 1, (1995). Google Scholar

[16]

M. Wojtkowski, The system of two spinning disks in the torus,, Physica D, 71 (1994), 430. doi: 10.1016/0167-2789(94)90009-4. Google Scholar

[1]

E. Minguzzi. A unifying mechanical equation with applications to non-holonomic constraints and dissipative phenomena. Journal of Geometric Mechanics, 2015, 7 (4) : 473-482. doi: 10.3934/jgm.2015.7.473

[2]

Panayotis G. Kevrekidis, Vakhtang Putkaradze, Zoi Rapti. Non-holonomic constraints and their impact on discretizations of Klein-Gordon lattice dynamical models. Conference Publications, 2015, 2015 (special) : 696-704. doi: 10.3934/proc.2015.0696

[3]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[4]

David Cowan. Rigid particle systems and their billiard models. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 111-130. doi: 10.3934/dcds.2008.22.111

[5]

Giancarlo Benettin, Massimiliano Guzzo, Anatoly Neishtadt. A new problem of adiabatic invariance related to the rigid body dynamics. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 959-975. doi: 10.3934/dcds.2008.21.959

[6]

Dmitry V. Zenkov, Anthony M. Bloch. Dynamics of generalized Euler tops with constraints. Conference Publications, 2001, 2001 (Special) : 398-405. doi: 10.3934/proc.2001.2001.398

[7]

Reimund Rautmann. Lower and upper bounds to the change of vorticity by transition from slip- to no-slip fluid flow. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1101-1109. doi: 10.3934/dcdss.2014.7.1101

[8]

Luca Consolini, Alessandro Costalunga, Manfredi Maggiore. A coordinate-free theory of virtual holonomic constraints. Journal of Geometric Mechanics, 2018, 10 (4) : 467-502. doi: 10.3934/jgm.2018018

[9]

Pavel Bachurin, Konstantin Khanin, Jens Marklof, Alexander Plakhov. Perfect retroreflectors and billiard dynamics. Journal of Modern Dynamics, 2011, 5 (1) : 33-48. doi: 10.3934/jmd.2011.5.33

[10]

Sujit Nair, Naomi Ehrich Leonard. Stable synchronization of rigid body networks. Networks & Heterogeneous Media, 2007, 2 (4) : 597-626. doi: 10.3934/nhm.2007.2.597

[11]

Maxim A. Olshanskii, Leo G. Rebholz, Abner J. Salgado. On well-posedness of a velocity-vorticity formulation of the stationary Navier-Stokes equations with no-slip boundary conditions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3459-3477. doi: 10.3934/dcds.2018148

[12]

Sebastián Ferrer, Francisco J. Molero. Andoyer's variables and phases in the free rigid body. Journal of Geometric Mechanics, 2014, 6 (1) : 25-37. doi: 10.3934/jgm.2014.6.25

[13]

Kai Koike. Wall effect on the motion of a rigid body immersed in a free molecular flow. Kinetic & Related Models, 2018, 11 (3) : 441-467. doi: 10.3934/krm.2018020

[14]

Giancarlo Benettin, Anna Maria Cherubini, Francesco Fassò. Regular and chaotic motions of the fast rotating rigid body: a numerical study. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 521-540. doi: 10.3934/dcdsb.2002.2.521

[15]

Joris Vankerschaver, Eva Kanso, Jerrold E. Marsden. The geometry and dynamics of interacting rigid bodies and point vortices. Journal of Geometric Mechanics, 2009, 1 (2) : 223-266. doi: 10.3934/jgm.2009.1.223

[16]

Tiancheng Ouyang, Zhifu Xie. Regularization of simultaneous binary collisions and solutions with singularity in the collinear four-body problem. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 909-932. doi: 10.3934/dcds.2009.24.909

[17]

Vladimir Dragović, Milena Radnović. Pseudo-integrable billiards and arithmetic dynamics. Journal of Modern Dynamics, 2014, 8 (1) : 109-132. doi: 10.3934/jmd.2014.8.109

[18]

F. J. Lin. Hamiltonian dynamics of atom-diatomic molecule complexes and collisions. Conference Publications, 2007, 2007 (Special) : 655-666. doi: 10.3934/proc.2007.2007.655

[19]

Yoon Mo Jung, Taeuk Jeong, Sangwoon Yun. Non-convex TV denoising corrupted by impulse noise. Inverse Problems & Imaging, 2017, 11 (4) : 689-702. doi: 10.3934/ipi.2017032

[20]

Paul Wright. Differentiability of Hausdorff dimension of the non-wandering set in a planar open billiard. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3993-4014. doi: 10.3934/dcds.2016.36.3993

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]