November  2016, 36(11): 5951-5970. doi: 10.3934/dcds.2016061

A class of adding machines and Julia sets

1. 

Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110, 22460-320 Rio de Janeiro, RJ, Brazil

Received  August 2015 Revised  May 2016 Published  August 2016

In this work we define a stochastic adding machine associated to the Fibonacci base and to a probabilities sequence $\overline{p}=(p_i)_{i\geq 1}$. We obtain a Markov chain whose states are the set of nonnegative integers. We study probabilistic properties of this chain, such as transience and recurrence. We also prove that the spectrum associated to this Markov chain is connected to the fibered Julia sets for a class of endomorphisms in $\mathbb{C}^2$.
Citation: Danilo Antonio Caprio. A class of adding machines and Julia sets. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5951-5970. doi: 10.3934/dcds.2016061
References:
[1]

H. El Abdalaoui, S. Bonnot, A. Messaoudi and O. Sester, On the Fibonacci complex dynamical systems,, Discrete and Continuous Dynamical Systems - A, 36 (2016), 2449. doi: 10.3934/dcds.2016.36.2449. Google Scholar

[2]

H. El Abdalaoui and A. Messaoudi, On the spectrum of stochastic perturbations of the shift and Julia Sets,, Fundamenta Mathematicae, 218 (2012), 47. doi: 10.4064/fm218-1-3. Google Scholar

[3]

D. A. Caprio, A class of adding machine and Julia sets, preprint,, , (). Google Scholar

[4]

D. A. Caprio and A. Messaoudi, Julia Sets for a class of endomorphisms on $\mathbbC^2$,, work in progress., (). Google Scholar

[5]

C. Frougny, Systṁes de numération linéaires et automates finis,, Ph.D thesis, (1989), 89. Google Scholar

[6]

C. Frougny, Fibonacci representations and finite automata,, IEEE Trans. Inform. Theory, 37 (1991), 393. doi: 10.1109/18.75263. Google Scholar

[7]

P. J. Grabner, P. Liardet and R. F. Tichy, Odometers and systems of numeration,, Acta Arithmetica, 70 (1995), 103. Google Scholar

[8]

P. R. Killeen and T. J. Taylor, A stochastic adding machine and complex dynamics,, Nonlinearity, 13 (2000), 1889. doi: 10.1088/0951-7715/13/6/302. Google Scholar

[9]

P. R. Killeen and T. J. Taylor, How the propagation of error through stochastic counters affects time discrimination and other psychophysical judgements,, Psychological Review, 107 (2000), 430. Google Scholar

[10]

G. F. Lawler, Introduction to Stochastic Processes,, $1^{nd}$ edition, (1995). Google Scholar

[11]

A. Messaoudi, O. Sester and G. Valle, Spectrum of stochastic adding machines and fibered Julia sets,, Stochastics and Dynamics, 13 (2013). doi: 10.1142/S0219493712500219. Google Scholar

[12]

A. Messaoudi and D. Smania, Eigenvalues of Fibonacci stochastic adding machine,, Stochastics and Dynamics, 10 (2010), 291. doi: 10.1142/S0219493710002966. Google Scholar

[13]

A. Messaoudi and R. M. A. Uceda, Stochastic adding machine and 2-dimensional Julia sets,, Discrete and Continuous Dynamical Systems - A, 34 (2014), 5247. doi: 10.3934/dcds.2014.34.5247. Google Scholar

[14]

A. Messaoudi and G. Valle, Spectra of stochastic adding machines based on Cantor Systems of Numeration, preprint,, , (). Google Scholar

[15]

J. Milnor, Dynamics in one complex variable,, $3^{nd}$ edition, (2006). Google Scholar

[16]

S. Morosawa, Nishimura, M. Taniguchi and T. Ueda, Holomorphic Dynamics,, Cambridge Studies in Advanced Mathematics, (2000). Google Scholar

[17]

J. Y. Ouvrard, Probabilités,, Cassini, (2009). Google Scholar

[18]

E. Zeckendorff, Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas,, Bull. Soc. Royale Sci. Liège, 42 (1972), 179. Google Scholar

show all references

References:
[1]

H. El Abdalaoui, S. Bonnot, A. Messaoudi and O. Sester, On the Fibonacci complex dynamical systems,, Discrete and Continuous Dynamical Systems - A, 36 (2016), 2449. doi: 10.3934/dcds.2016.36.2449. Google Scholar

[2]

H. El Abdalaoui and A. Messaoudi, On the spectrum of stochastic perturbations of the shift and Julia Sets,, Fundamenta Mathematicae, 218 (2012), 47. doi: 10.4064/fm218-1-3. Google Scholar

[3]

D. A. Caprio, A class of adding machine and Julia sets, preprint,, , (). Google Scholar

[4]

D. A. Caprio and A. Messaoudi, Julia Sets for a class of endomorphisms on $\mathbbC^2$,, work in progress., (). Google Scholar

[5]

C. Frougny, Systṁes de numération linéaires et automates finis,, Ph.D thesis, (1989), 89. Google Scholar

[6]

C. Frougny, Fibonacci representations and finite automata,, IEEE Trans. Inform. Theory, 37 (1991), 393. doi: 10.1109/18.75263. Google Scholar

[7]

P. J. Grabner, P. Liardet and R. F. Tichy, Odometers and systems of numeration,, Acta Arithmetica, 70 (1995), 103. Google Scholar

[8]

P. R. Killeen and T. J. Taylor, A stochastic adding machine and complex dynamics,, Nonlinearity, 13 (2000), 1889. doi: 10.1088/0951-7715/13/6/302. Google Scholar

[9]

P. R. Killeen and T. J. Taylor, How the propagation of error through stochastic counters affects time discrimination and other psychophysical judgements,, Psychological Review, 107 (2000), 430. Google Scholar

[10]

G. F. Lawler, Introduction to Stochastic Processes,, $1^{nd}$ edition, (1995). Google Scholar

[11]

A. Messaoudi, O. Sester and G. Valle, Spectrum of stochastic adding machines and fibered Julia sets,, Stochastics and Dynamics, 13 (2013). doi: 10.1142/S0219493712500219. Google Scholar

[12]

A. Messaoudi and D. Smania, Eigenvalues of Fibonacci stochastic adding machine,, Stochastics and Dynamics, 10 (2010), 291. doi: 10.1142/S0219493710002966. Google Scholar

[13]

A. Messaoudi and R. M. A. Uceda, Stochastic adding machine and 2-dimensional Julia sets,, Discrete and Continuous Dynamical Systems - A, 34 (2014), 5247. doi: 10.3934/dcds.2014.34.5247. Google Scholar

[14]

A. Messaoudi and G. Valle, Spectra of stochastic adding machines based on Cantor Systems of Numeration, preprint,, , (). Google Scholar

[15]

J. Milnor, Dynamics in one complex variable,, $3^{nd}$ edition, (2006). Google Scholar

[16]

S. Morosawa, Nishimura, M. Taniguchi and T. Ueda, Holomorphic Dynamics,, Cambridge Studies in Advanced Mathematics, (2000). Google Scholar

[17]

J. Y. Ouvrard, Probabilités,, Cassini, (2009). Google Scholar

[18]

E. Zeckendorff, Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas,, Bull. Soc. Royale Sci. Liège, 42 (1972), 179. Google Scholar

[1]

Ali Messaoudi, Rafael Asmat Uceda. Stochastic adding machine and $2$-dimensional Julia sets. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5247-5269. doi: 10.3934/dcds.2014.34.5247

[2]

Koh Katagata. Quartic Julia sets including any two copies of quadratic Julia sets. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2103-2112. doi: 10.3934/dcds.2016.36.2103

[3]

Luiz Henrique de Figueiredo, Diego Nehab, Jorge Stolfi, João Batista S. de Oliveira. Rigorous bounds for polynomial Julia sets. Journal of Computational Dynamics, 2016, 3 (2) : 113-137. doi: 10.3934/jcd.2016006

[4]

Robert L. Devaney, Daniel M. Look. Buried Sierpinski curve Julia sets. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 1035-1046. doi: 10.3934/dcds.2005.13.1035

[5]

Nathaniel D. Emerson. Dynamics of polynomials with disconnected Julia sets. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 801-834. doi: 10.3934/dcds.2003.9.801

[6]

Tien-Cuong Dinh, Nessim Sibony. Rigidity of Julia sets for Hénon type maps. Journal of Modern Dynamics, 2014, 8 (3&4) : 499-548. doi: 10.3934/jmd.2014.8.499

[7]

Tarik Aougab, Stella Chuyue Dong, Robert S. Strichartz. Laplacians on a family of quadratic Julia sets II. Communications on Pure & Applied Analysis, 2013, 12 (1) : 1-58. doi: 10.3934/cpaa.2013.12.1

[8]

Krzysztof Barański, Michał Wardal. On the Hausdorff dimension of the Sierpiński Julia sets. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3293-3313. doi: 10.3934/dcds.2015.35.3293

[9]

Ranjit Bhattacharjee, Robert L. Devaney, R.E. Lee Deville, Krešimir Josić, Monica Moreno-Rocha. Accessible points in the Julia sets of stable exponentials. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 299-318. doi: 10.3934/dcdsb.2001.1.299

[10]

Koh Katagata. Transcendental entire functions whose Julia sets contain any infinite collection of quasiconformal copies of quadratic Julia sets. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5319-5337. doi: 10.3934/dcds.2019217

[11]

Weiyuan Qiu, Fei Yang, Yongcheng Yin. Quasisymmetric geometry of the Cantor circles as the Julia sets of rational maps. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3375-3416. doi: 10.3934/dcds.2016.36.3375

[12]

Rich Stankewitz, Hiroki Sumi. Random backward iteration algorithm for Julia sets of rational semigroups. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2165-2175. doi: 10.3934/dcds.2015.35.2165

[13]

Rich Stankewitz, Hiroki Sumi. Backward iteration algorithms for Julia sets of Möbius semigroups. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6475-6485. doi: 10.3934/dcds.2016079

[14]

Alexander Blokh, Lex Oversteegen, Vladlen Timorin. Non-degenerate locally connected models for plane continua and Julia sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5781-5795. doi: 10.3934/dcds.2017251

[15]

Hiroki Sumi, Mariusz Urbański. Measures and dimensions of Julia sets of semi-hyperbolic rational semigroups. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 313-363. doi: 10.3934/dcds.2011.30.313

[16]

Mark Comerford. Non-autonomous Julia sets with measurable invariant sequences of line fields. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 629-642. doi: 10.3934/dcds.2013.33.629

[17]

Hiroki Sumi. Dynamics of postcritically bounded polynomial semigroups I: Connected components of the Julia sets. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1205-1244. doi: 10.3934/dcds.2011.29.1205

[18]

Youming Wang, Fei Yang, Song Zhang, Liangwen Liao. Escape quartered theorem and the connectivity of the Julia sets of a family of rational maps. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5185-5206. doi: 10.3934/dcds.2019211

[19]

Jun Hu, Oleg Muzician, Yingqing Xiao. Dynamics of regularly ramified rational maps: Ⅰ. Julia sets of maps in one-parameter families. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3189-3221. doi: 10.3934/dcds.2018139

[20]

Felix X.-F. Ye, Yue Wang, Hong Qian. Stochastic dynamics: Markov chains and random transformations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2337-2361. doi: 10.3934/dcdsb.2016050

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]